Radio Number
المؤلف:
Bantva, D
المصدر:
"Further Results on the Radio Number of Trees." 25 May 2018. https://arxiv.org/abs/1805.10083.
الجزء والصفحة:
...
8-5-2022
2741
Radio Number
Let
be a finite, connected, undirected graph with graph diameter
and graph distance
between vertices
and
. A radio labeling of a graph
is labeling using distinct nonnegative integers such that
for every pair of distinct vertices
,
in the vertex set of
. Then the radio number of
, commonly denoted
, is the smallest integer
such that
has a radio labeling
with
{f(v):v in V(G)}=k" src="https://mathworld.wolfram.com/images/equations/RadioNumber/Inline16.svg" style="height:22px; width:205px" />.
The radio number of path graphs
and cycle graphs
were determined by Liu and Zhu (2005). The following table summarizes some known results for a number of special families of graphs.
| graph |
radio number |
complete graph  |
 |
complete bipartite graph  |
{1 for m=n=1; m+n otherwise" src="https://mathworld.wolfram.com/images/equations/RadioNumber/Inline22.svg" style="height:68px; width:208px" /> |
complete tripartite graph  |
{2 for k=m=n=1; k+m+n+1 otherwise" src="https://mathworld.wolfram.com/images/equations/RadioNumber/Inline24.svg" style="height:68px; width:322px" /> |
| crown graph |
for  |
cycle graph  |
{(n-2)/2|_n/4_|+n-1 for n=2 (mod 0); ((n-1)(n+3))/8 for n=4 (mod 1); (n-1)/2(2+|_n/4_|) for n=2 (mod 1)" src="https://mathworld.wolfram.com/images/equations/RadioNumber/Inline28.svg" style="height:116px; width:358px" /> |
path graph  |
{0 for n=1; 3 for n=3; 1/2n(n-2)+1 for even n; 1/2(n-3)(n+1)+4 for odd n" src="https://mathworld.wolfram.com/images/equations/RadioNumber/Inline30.svg" style="height:146px; width:332px" /> |
star graph  |
{0 for n=1; 1 for n=2; n otherwise" src="https://mathworld.wolfram.com/images/equations/RadioNumber/Inline32.svg" style="height:104px; width:130px" /> |
wheel graph  |
{3 for n=4; 6 for n=5; n otherwise" src="https://mathworld.wolfram.com/images/equations/RadioNumber/Inline34.svg" style="height:104px; width:130px" /> |
REFERENCES
Bantva, D. "Further Results on the Radio Number of Trees." 25 May 2018. https://arxiv.org/abs/1805.10083.
Chartrand, G.; Erwin, D.; Harary, F.; and Zhang, P. "Radio Labelings of Graphs." Bull. Inst. Combin. Appl. 33, 77-85, 2001.
Chartrand G.; and Zhang, P. "Radio Colorings of Graphs--A Survey." Int. J. Comput. Appl. Math. 2, 237-252, 2007.
Griggs, J. R. and Yeh, R. K. "Labeling Graphs with Condition at Distance. 2." SIAM J. Disc. Math. 5, 586-595, 1992.
Liu, D. "Radio Number for Trees." Disc. Math. 308, 1153-1164, 2008.
Liu, D. D.-F.; Zhu, X. "Multilevel Distance Labelings for Paths and Cycles." SIAM J. Disc. Math. 19, 610-621, 2005.
Zhang, P. "Radio Labeling of Cycles." Ars Combin. 65, 21-32, 2002.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة