تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Minimum Spanning Tree
المؤلف: Fredman, M. L. and Tarjan, R. E
المصدر: "Fibonacci Heaps and Their Uses in Network Optimization." J. ACM 34
الجزء والصفحة: ...
22-5-2022
4047
The minimum spanning tree of a weighted graph is a set of edges of minimum total weight which form a spanning tree of the graph. When a graph is unweighted, any spanning tree is a minimum spanning tree.
The minimum spanning tree can be found in polynomial time. Common algorithms include those due to Prim (1957) and Kruskal's algorithm (Kruskal 1956). The problem can also be formulated using matroids (Papadimitriou and Steiglitz 1982). A minimum spanning tree can be found in the Wolfram Language using the command FindSpanningTree[g].
The Season 1 episodes "Vector" and "Man Hunt" (2005) and Season 2 episode "Rampage" (2006) of the television crime drama NUMB3RS feature minimal spanning trees.
Fredman, M. L. and Tarjan, R. E. "Fibonacci Heaps and Their Uses in Network Optimization." J. ACM 34, 596-615, 1987.
Graham, R. L. and Hell, P. "On the History of the Minimum Spanning Tree Problem." Ann. History Comput. 7, 43-57, 1985.
Kruskal, J. B. "On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem." Proc. Amer. Math. Soc. 7, 48-50, 1956.
Papadimitriou, C. H. and Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.
Pemmaraju, S. and Skiena, S. "Minimum Spanning Trees." §8.2 in Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 335-336, 2003.
Prim, R. C. "Shortest Connection Networks and Some Generalizations." Bell System Tech. J. 36, 1389-1401, 1957.
Skiena, S. "Minimum Spanning Tree." §6.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 232-236, 1990.