تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Icosahedral Graph
المؤلف:
Bondy, J. A. and Murty, U. S. R
المصدر:
Graph Theory with Applications. New York: North Holland,
الجزء والصفحة:
...
22-3-2022
2722
The icosahedral graph is the Platonic graph whose nodes have the connectivity of the icosahedron, illustrated above in a number of embeddings. The icosahedral graph has 12 vertices and 30 edges.
Since the icosahedral graph is regular and Hamiltonian, it has a generalized LCF notation. In fact, there are two distinct generalized LCF notations of order 6-- and
--8 of order 2, and 17 of order 1, illustrated above.
It is implemented in the Wolfram Language as GraphData["IcosahedralGraph"].
It is a distance-regular graph with intersection array {5,2,1;1,2,5}" src="https://mathworld.wolfram.com/images/equations/IcosahedralGraph/Inline3.svg" style="height:22px; width:126px" />, and therefore also a Taylor graph. It is also distance-transitive.
The icosahedral graph is graceful (Gardner 1983, pp. 158 and 163-164; Gallian 2018, p. 35), as shown by the labeling above which gives absolute differences of adjacent labeled vertices consisting of precisely the numbers 0-30 inclusive. There are 24 fundamentally different graceful labelings (i.e., graceful labelings that are distinct modulo subtractive complementation and the symmetries of the graph), giving a total of 5760 graceful labelings in all (Bert Dobbelaere, pers. comm., Oct. 2, 2020). The computation by Ashkok Kumar Chandra that determined there to be 5 fundmanetally different solutions, as reported by Gardner (1983, pp. 163-164), therefore seems to be in error.
There are two minimal integral embeddings of the icosahedral graph, illustrated above, all with maximum edge length of 8 (Harborth and Möller 1994).
The minimal planar integral embedding of the icosahedral graph has maximum edge length of 159 (Harborth et al. 1987).
The skeletons of the great dodecahedron, great icosahedron, and small stellated dodecahedron are all isomorphic to the icosahedral graph.
The chromatic polynomial of the icosahedral graph is
and the chromatic number is 4.
Its graph spectrum is (Buekenhout and Parker 1998; Cvetkovic et al. 1998, p. 310). Its automorphism group is of order
(Buekenhout and Parker 1998).
The plots above show the adjacency, incidence, and graph distance matrices for the icosahedral graph.
The adjacency matrix for the icosahedral graph with appended, where
is a unit matrix and
is an identity matrix, is a generator for the Golay code.
The following table summarizes properties of the icosahedral graph.
property | value |
automorphism group order | 120 |
characteristic polynomial | |
chromatic number | 4 |
claw-free | yes |
clique number | 3 |
determined by spectrum | ? |
diameter | 3 |
distance-regular graph | yes |
dual graph name | dodecahedral graph |
edge chromatic number | 5 |
edge connectivity | 5 |
edge count | 30 |
Eulerian | no |
girth | 3 |
Hamiltonian | yes |
Hamiltonian cycle count | 2560 |
Hamiltonian path count | ? |
integral graph | no |
independence number | 3 |
line graph | no |
perfect matching graph | no |
planar | yes |
polyhedral graph | yes |
polyhedron embedding names | great dodecahedron, great icosahedron, icosahedron, Jessen's orthogonal icosahedron, small stellated dodecahedron |
radius | 3 |
regular | yes |
spectrum | |
square-free | no |
traceable | yes |
triangle-free | no |
vertex connectivity | 5 |
vertex count | 12 |
weakly regular parameters |
Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 234, 1976.
Buekenhout, F. and Parker, M. "The Number of Nets of the Regular Convex Polytopes in Dimension ." Disc. Math. 186, 69-94, 1998.
Cvetković, D. M.; Doob, M.; and Sachs, H. Spectra of Graphs: Theory and Applications, 3rd rev. enl. ed. New York: Wiley, 1998.
DistanceRegular.org. "Icosahedron." http://www.distanceregular.org/graphs/icosahedron.html.Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018.
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.Gardner, M. "Golomb's Graceful Graphs." Ch. 15 in Wheels, Life, and Other Mathematical Amusements. New York: W. H. Freeman, pp. 152-165, 1983.
Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag, p. 127, 2001.
Harborth, H. and Möller, M. "Minimum Integral Drawings of the Platonic Graphs." Math. Mag. 67, 355-358, 1994.
Harborth, H.; Kemnitz, A.; Möller, M.; and Süssenbach, A. "Ganzzahlige planare Darstellungen der platonischen Körper." Elem. Math. 42, 118-122, 1987.
Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, p. 266, 1998.