

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Chordless Cycle
المؤلف:
Chvátal, V.
المصدر:
"The Strong Perfect Graph Theorem." http://www.cs.concordia.ca/~chvatal/perfect/spgt.html.
الجزء والصفحة:
...
27-2-2022
2136
Chordless Cycle
A chordless cycle of a graph is a graph cycle in
that has no cycle chord. Unfortunately, there are conflicting conventions on whether or not 3-cycles should be considered chordless. In particular, in mathematical graph theory, "trivial" cycles of length 3 are commonly not considered chordless (e.g., West 2000), while in computer science, length-3 cycles are generally considered chordless (e.g., Cook 2000, Wikipedia 2020). For example, (West 2000, p. 225) states, "A chordless cycle in
is a cycle of length at least 4 in
that has no chord (that is, the cycle is an induced subgraph), while Cook (2000, p. 197) states, "a triangle is considered to be a chordless cycle."
Excluding 3-cycles allows for simpler definitions and theorem statements (particularly those related to perfect graphs), for example permitting the definition of chordal graph as a simple graph possessing no chordless cycles (West 2000, p. 225) without further qualification.
The "ChordlessCycles" and related properties in the Wolfram Language function GraphData adopt the convention of West (2000, p. 225) that chordless cycles must have length at least 4.
An alternate approach followed by Chvátal defines a graph hole as "a chordless cycle of length at least four," thus distinguishing between the a generic "chordless cycle" (possibly allowing length-3 cycles) and a "hole" (excluding them).
Since the term "chordless cycle" seems to be used much more widely than "graph hole," perhaps the clearest approach is to always state "chordless cycle of length at least four" when length-3 cycles are to be excluded.
A graph is perfect iff neither the graph nor its complement has a (length four or greater) chordless cycle of odd order.
If a chordless 5-cycle exists in a graph , one also exists in its graph complement
since in the complement the interior diagonals are really edges in the original. In addition, if no 5-cycle exists in
, then no chordless cycle exists in
(S. Wagon,. pers. comm., Feb. 2013).
No chordless cycles (of length four or more) of length greater than exist in a graph
with independence number
.
No chordless cycles (of length four or more) of length greater than exist in the graph complement
of a graph
with
, where
is the clique covering number and
is the clique number.
Every cycle of a cactus graph is chordless, but there exist graphs (e.g., the -graph and Pasch graph) whose cycles are all chordless but which are not cactus graphs.
REFERENCES
Cook, K.; Eschen, E. M.; Sritharan, R.; and Wang, X. "Completing Colored Graphs to Meet a Target Property." In Graph-Theoretic Concepts in Computer Science: 39th International Workshop, WG 2013, Lübeck, Germany, June 19-21, 2013, Revised Papers.Ed. A. Brandstädt, K. Jansen, and R. Reischuk). Berlin, Germany:ÊSpringer, pp. 189-200, 2013.
Chvátal, V. "The Strong Perfect Graph Theorem." http://www.cs.concordia.ca/~chvatal/perfect/spgt.html.
West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, p. 225, 2000.
Wikipedia contributors. "Induced Path." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia. Aug. 7, 2020; retreived Sep. 4, 2020. https://en.wikipedia.org/wiki/Induced_path.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)