تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Intermediate Value Theorem
المؤلف:
Anton, H
المصدر:
Calculus with Analytic Geometry, 2nd ed. New York: Wiley
الجزء والصفحة:
...
29-9-2018
3400
Intermediate Value Theorem
If is continuous on a closed interval
, and
is any number between
and
inclusive, then there is at least one number
in the closed interval such that
.
The theorem is proven by observing that is connected because the image of a connected set under a continuous function is connected, where
denotes the image of the interval
under the function
. Since
is between
and
, it must be in this connected set.
The intermediate value theorem (or rather, the space case with , corresponding to Bolzano's theorem) was first proved by Bolzano (1817). While Bolzano's used techniques which were considered especially rigorous for his time, they are regarded as nonrigorous in modern times (Grabiner 1983).
REFERENCES:
Anton, H. Calculus with Analytic Geometry, 2nd ed. New York: Wiley, p. 189, 1984.
Apostol, T. M. "The Intermediate-Value Theorem for Continuous Functions." §3.10 in Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra. Waltham, MA: Blaisdell, pp. 144-145, 1967.
Bolzano, B. "Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reele Wurzel der Gleichung liege." Prague, 1817. English translation in Russ, S. B. "A Translation of Bolzano's Paper on the Intermediate Value Theorem." Hist. Math. 7, 156-185, 1980.
Cauchy, A. Cours d'analyse. Reprinted in Oeuvres, series 2, vol. 3, pp. 378-380. English translation in Grabiner, J. V. The Origins of Cauchy's Rigorous Calculus. Cambridge, MA: MIT Press, pp. 167-168, 1981.
Grabiner, J. V. "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus." Amer. Math. Monthly 90, 185-194, 1983.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
