تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Connectivity-k-connectivity
المؤلف:
Jean-Claude Fournier
المصدر:
Graph Theory and Applications
الجزء والصفحة:
61-62
28-7-2016
1601
To understand the motivation of what will follow, consider the three connected graphs in Figure 1.1. The first one can be disconnected by thendeletion of a vertex, x, which is a cut vertex of the graph.
Figure 1.1. Three examples of graphs and their connectivity:
This is not the case with the second graph, which nevertheless can be disconnected by the deletion of two vertices, x and y. As to the third graph, it has no set of vertices by which deletion would disconnect it. In fact, this graph is complete and the only thing that can be done to it by deleting some vertices is to reduce it to a single vertex (remember that a graph has by definition at least one vertex). Looking at edges instead of vertices leads to similar observations concerning the smallest number of edges of the graph by which deletion would disconnect the graph. However, if the graph has at least two vertices, it is always possible to disconnect it by deleting some edges (we do not have the equivalent of the preceding third case for vertices). If we see these graphs as models of communication networks, we understand the importance of these considerations concerning the vulnerability to breakdowns. We introduce a parameter of a graph which measures these properties. The connectivity κ(G) of a graph G is defined as the smallest number of vertices by which deletion in G yields a disconnected graph or a graph reduced to one vertex.
Let us formalize this definition. If there is in graph G a set of vertices
A, which may be empty, such that G − A is disconnected, then:
otherwise:
(where n is the number of vertices of G).
The case is characterized by the fact that in graph G any two vertices are joined by an edge. In other words G is a complete graph (remember that G is simple). If that is the case, there is no set A of vertices such that G − A is disconnected. If it is not the case, there are in G two vertices not joined by an edge, x and y, and A = X {x, y} then has the property that G − A is disconnected. Since |A|≤ n − 2, we can deduce the
inequality
Thus k(G) is bounded by:
The case corresponds to G disconnected or n =1.
The other following inequality, to be verified, is based on the fact that if A is the set of neighbors of a vertex, then G−A is either disconnected or reduced to a single vertex. Considering a vertex of minimum degree δG, we deduce:
Graph Theory and Applications ,Jean-Claude Fournier, WILEY, page(61-62)