1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Characterization

المؤلف:  Jean-Claude Fournier

المصدر:  Graph Theory and Applications

الجزء والصفحة:  37-38

27-7-2016

2008

Which graphs embed in the plane? We have proved that K5 and K3,3 donot. In fact, these are the crucial graphs and lead to a characterization  of planar graphs known as Kuratowski's Theorem. Kasimir Kuratowski once asked  Frank Harary about the origin of the notation for K5 and K3,3. Harary replied,  '''The K in K5 stands for Kasimir, and the K in K3,3 stands for Kuratowski!" Recall that a subdivision of a graph is a graph obtained from it by replacing  edges with pairwise internally-disjoint paths

                                                                                                          

 

Theorem 1.1.

 A graph is bipartite if and only if it contains no odd cycle.

Proof (outline). The proof of the necessary condition is easy when reasoning by the absurd and, in relation to the classes of the bipartition, following in order the vertices of an odd cycle. The proof of the sufficient condition isless simple but can be done in a constructive way, that is by producing the adequate bipartition. The principle is as follows: mark a first arbitrarily chosen vertex 0, then mark its neighbors 1, then take each of the newly marked vertices and mark their not-yet-marked neighbors 0, and so on until all vertices reached are marked 0 or 1. The crucial point is that if during this marking process two neighboring vertices happen to receive the same mark (twice 0 or twice 1) then there is an odd cycle in the graph. This can be seen by considering the paths defined by the succession of marked vertices which come to these two vertices and the edge joining them. With the hypothesis of the sufficient condition, this circumstance of two neighboring vertices bearing the same mark will not occur. The marks given to the vertices will define a bipartition in compliance with the definition of bipartite graphs. Any vertex will be marked as soon as the graph is connected, otherwise we should proceed independently with each connected component.


 

1-Graph Theory  and Applications ,Jean-Claude Fournier, WILEY, page(37-38)

2- Introduction to Graph Theory Second Edition, Douglas B. West , Indian Reprint, 2002,page(246)

 

 

 

 

 

EN

تصفح الموقع بالشكل العمودي