Logo

بمختلف الألوان
في وطنٍ تئنُّ روحه من ثِقل الأيام، وتتوقُّ أجياله إلى فجرٍ يمحو ظلام اليأس، انبعث نورٌ من قلب مدينة مقدسة، نورٌ يملأ الوطن ضياءً، وأيدٍ أمينة تعانق آماله واحلامه. سطع نور العتبة العباسية المقدسة، التي لطالما كانت مَوئِلاً للعلم والمعرفة، لتتجاوز دورها الديني وتصبح حاضنة حقيقية للطاقات الشابة،... المزيد
أخر المواضيع


مرحبا بكَ زائرنا العزيز
نتمنى أن تكون في تمام الصحة والعافية

تحذير! هل انت متأكد من حذف هذا المقال مع الردود عليه ؟
سلسلة مفاهيم في الفيزياء (ج71): سقوط الاحتمال: نظرية GRW وتفسير انهيار الدالة الموجية

منذ 3 اسابيع
في 2025/10/26م
عدد المشاهدات :337
سلسلة مفاهيم في الفيزياء
الجزء الواحد والسبعون: سقوط الاحتمال: نظرية GRW وتفسير انهيار الدالة الموجية
الأستاذ الدكتور نوري حسين نور الهاشمي
23/10/2025

ذكرنا في مقالات سابقة كيف يمكن حل مشكلة القياس في ميكانيكا الكم من خلال تغيير النظرية بحيث تتطور دالة الموجة بمرور الوقت لتصبح مناظرة لحالة تتوافق مع قيمة فريدة للملاحظة التي تم قياسها. بمعنى آخر، تكييف النظرية الكمية حتى تتطابق مع النتائج التجريبية.
ثم قلنا إن هناك صعوبتين في هذا النهج:
أولاً، أنه يبدو أنه يتطلب معرفة مسبقة بما يجب قياسه (لأن حالة لا يمكن أن تتوافق، بشكل عام، مع قيمة فريدة لعدة ملاحظات)،
وثانيًا أنه يجب أن يحدث بشكل غير مرئي في ظروف تشمل الرصد، ولكن ببطء شديد في معظم الحالات التي تُظهر أن معادلة شرودنغر تعمل فيها بشكل جيد جداً.
تم اقتراح نموذج صريح، يتم فيه التغلب على هاتين الصعوبتين، من قبل ثلاثة فيزيائيين إيطاليين: جيانكارلو جيراردي، ألبرتو ريميني، وتوليو ويبر المعروفين الآن اختصارًا باسم GRW، في مقالة مهمة نُشرت عام 1986 في مجلة Physical Review D المجلد 34، الصفحة 470.
أشاروا أولاً إلى أن جميع القياسات تؤدي في النهاية إلى تحديد موضع جسم ماكروسكوبي. (المكانة الخاصة للموضع مضمونة بالفعل ضمنياً في نموذج دي برويبوم، كما تم توضيحه سابقًا). وهكذا، يمكن حل مشكلة القياس إذا تطورت دوال الموجة بحيث تضمن أن الأجسام الماكروسكوبية عادةً ما تكون لها مواضع محددة جيدًا. ونعني بجسم ماكروسكوبي هنا شيئاً يمكن رؤيته بالعين المجردة، أي جسم ذو كتلة تتجاوز تقريبًا 10⁶ غرام. وبالمثل، فإن الموضع المحدد جيدًا يتطلب أن يكون انتشار دالة الموجة أقل من فصل يمكن ملاحظته، مثلاً، أقل من حوالي 10⁴ سم.
من أجل تحقيق هذا الهدف، افترض GRW أن جميع الجسيمات تتعرض (نادرًا) إلى اصطدامات عشوائية بواسطة عامل خارجي يُدمّر (يُصفّر) كل دالة موجة، باستثناء تلك التي تقع ضمن مسافة أقل من حوالي 10⁵ سم من موضع معين يتم اختياره عشوائيًا، وباحتمال يتناسب مع مربع مقدار دالة الموجة للجسيم، أي مع احتمال وجوده في هذا الموضع إذا تم قياسه (راجع المقالات السابقة).
افترض GRW أن المدة الزمنية المتوسطة بين هذه الضربات تقارب 10¹⁶ ثانية، مما يضمن أن تأثيرات هذه الضربات في العالم الميكروسكوبي تكون مهملة، ولا تزعزع الاتفاق المثالي الملحوظ بين نظرية الكم والتجربة. ومع ذلك، فإن الجسم الماكروسكوبي الصغير المذكور أعلاه، ذو الكتلة 10⁶ جم، يحتوي على حوالي 10¹⁸ إلكترون ونيوكليون، ولذلك عادةً ما يتم ضرب حوالي مئة من هذه كل ثانية.
وعلى الرغم من أنه قد يبدو في البداية أن ضرب عدد قليل من الجسيمات من بين هذا العدد الكبير سيكون له تأثير ضئيل، إلا أن ما يحدث فعليًا هو أن ضربة واحدة فقط كافية لانهيار الحالة كلها: عندما تنهار واحدة، ينهار الجميع وهذا هو جوهر السحر الحقيقي في مقترح GRW .
لفهم كيف يحدث ذلك، نتخيل أن الجسم الماكروسكوبي يمثل نوعًا من الكاشف (أو "مؤشر") يخبرنا عما إذا كان جسيم ما قد مرّ، أو لم يمرّ، عبر حاجز معين. لنفترض أن المؤشر في الموضع 1، مع دالة موجة A، إذا تم عكس الجسيم، وفي الموضع 2، مع دالة موجة B، إذا لم يتم عكسه. على سبيل المثال، A تتوافق مع جميع الجسيمات في الجسم كونها قريبة من الموضع 1. نفترض أن، في قياس سليم، يكون الفصل بين الموضعين أكبر من كل من حجم الجسم ومعامل الحجم في GRW، وهو 10⁴ سم. بهذه الفرضيات يمكن وضع صيغة رياضية لحساب دالة الموجة.
نواصل الحديث ونفترض أن أحد الجسيمات قد تعرّض للضرب. مركز الضربة سيحدث على الأرجح حيث تكون دالة الموجة كبيرة، أي في جوار الموضع 1 أو الموضع 2 (باحتمالات P1 وP2 على التوالي). لنفترض أن الاختيار العشوائي وقع على الموضع الأول. عندها، تُضرب دالة الموجة الكاملة بدالة تكون غير صفرية فقط في جوار الموضع 1. ونظرًا لأن الحالة الكاملة الآن صفرية فعليًا في كل الأماكن ما عدا الموضع 2، فستُستبعد فعليًا نتيجة هذه الضربة. أي لا توجد قيم لموضع الجسيم المضروب تكون فيها كل من دالة الضرب ودالة الموجة B غير صفرية في نفس الوقت.
بكلمات أخرى: تنهار دالة الموجة إلى الحالة التي انعكس فيها الجسيم.
يتبع في الجزء 72
حين يسقط القناع: قراءة نفسية في تغيّر الصديق الطيّب
بقلم الكاتب : حنين ضياء عبدالوهاب الربيعي
كان يبدو صديقًا حقيقيًا، قريبًا للروح، تتحدث إليه فيفهمك دون أن تشرح كثيرًا. عاش بينك زمنًا من المودّة والصدق الظاهري، حتى ظننت أن صداقتكما من النوع الذي لا يتبدّل. لكنك كنتَ مخدوعًا أو بالأحرى كنت ترى الوجه الذي أراد أن يُريك إياه. فجأة تغيّر. صار يتصرف بسوء، يتحدث عنك في غيابك، يذكرك بأقبح الكلام،... المزيد
المزيد من المقالات الإجتماعية

المزيد من المقالات الثقافية

كان اسمها (زينب)  ويقال إن للإنسان نصيبا من اسمه،وهي كذلك،ترتدي الخُلق وتنطق... المزيد
ونحنُ في المشتاةِ ندعو الجَفَلَىٰ لا تُرى الآدِبَ فينا يُنتَقَرُ طرفة بن العبد... المزيد
مازلتُ غريقا في جيبِ الذكرياتِ المُرّةِ، أحاولُ أن أخمدها قليلا ؛لكنّ رأسها... المزيد
رُوَّادُ الولاء : شعراء أضاءوا بالحقِّ فطُمِسَ نورُهم لطالما تهادت على بساط... المزيد
في قريةٍ صغيرةٍ محاطةٍ بجبالٍ شاهقة، عاش رجلٌ يدعى هشام، معروفٌ بحكمته وطيب قلبه،... المزيد
في فضاءات القصيدة العراقية، ينهض فالح حسون الدراجي كصرحٍ شعريٍّ نادر، يُجسّد... المزيد
في زاوية السوق، جلس رجل أشيب، يضم كفيه الفارغتين إلى صدره كمن يحمي كنزًا لا يُرى. كان اسمه...
حين نتحدث عن الأجناس الأدبية التي تتصدر المشهد الثقافي العربي عامة، والعراقي خاصة، نُشَخِّص...
في رحاب الكاظمية المقدسة، وُلد جابر بن جليل كرم البديري الكاظمي عام 1956، ليكون نجمًا متألقًا...
كان يتذمر،والشكوی تضحك في فمه كيف يعلِّمني صبيٌّ علی كلٍّتلميذٌ صغير  وسأعيد تربيته أنا...


منذ 15 ساعة
2025/11/16
سلسلة مفاهيم في الفيزياء الجزء السادس والسبعون: كون داخل الكون: العوالم المتعددة...
منذ 15 ساعة
2025/11/16
منذ سنوات برزت ظاهرة من قبل بعض جماهير الاندية الكبيرة ضد نادي الزوراء وانتشرت...
منذ 15 ساعة
2025/11/16
في عالم سريع الإيقاع يزداد فيه الضغط والعمل والسهر أصبحت مشروبات الطاقة جزءاً من...
رشفات
( مَن صبر أُعطي التأييد من الله )