Read More
Date: 23-8-2016
![]()
Date: 11-8-2016
![]()
Date: 11-8-2016
![]() |
Momentum Perturbation
A particle of mass m moves in one dimension according to the Hamiltonian
(1)
(2)
All eigenfunctions ѱn(x) and eigenvalues En are known. Suppose we add a term to the Hamiltonian, where λ and m are constants and p is the momentum operator:
(3)
Derive an expression for the eigenvalues and eigenstates of the new Hamiltonian H.
SOLUTION
The first step is to rewrite the Hamiltonian by completing the square on the momentum operator:
(1)
The constant just shifts the zero of the momentum operator. The rewritten Hamiltonian in (1) suggests the perturbed eigenstates:
(2)
The action of the displaced momentum operator p + λ on the new eigenstates is
(3)
so the Hamiltonian gives
(4)
and the eigenvalues are simply
(5)
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
ضمن مؤتمر ذاكرة الألم في العراق باحث يتطرّق إلى استراتيجية كرسي اليونسكو في دراسات منع الإبادة الجماعية في العالم الإسلامي
|
|
|