Read More
Date: 7-2-2021
![]()
Date: 8-3-2021
![]()
Date: 22-3-2021
![]() |
Let be (possibly complex) eigenvalues of a set of random
real matrices with entries independent and taken from a standard normal distribution. Then as
,
is uniformly distributed on the unit disk in the complex plane. For small
, the distribution shows a concentration along the real line accompanied by a slight paucity above and below (with interesting embedded structure). However, as
, the concentration about the line disappears and the distribution becomes truly uniform.
REFERENCES:
Bai, Z. D. "Circular Law." Ann. Prob. 25, 494-529, 1997.
Bai, Z. D. and Yin, Y. Q. "Limiting Behavior of the Norm Products of Random Matrices and Two Problems of Geman-Hwang." Probab. Theory Related Fields 73, 555-569, 1986.
Edelman, A. and Kostlan, E. "How Many Zeros of a Random Polynomial are Real?" Bull. Amer. Math. Soc. 32, 1-37, 1995.
Edelman, A. "The Probability that a Random Real Gaussian Matrix has Real Eigenvalues, Related Distributions, and the Circular Law." J. Multivariate Anal. 60, 203-232, 1997.
Geman, S. "The Spectral Radius of Large Random Matrices." Ann. Probab. 14, 1318-1328, 1986.
Girko, V. L. "Circular Law." Theory Probab. Appl. 29, 694-706, 1984.
Girko, V. L. Theory of Random Determinants. Boston, MA: Kluwer, 1990.
Mehta, M. L. Random Matrices, 3rd ed. New York: Academic Press, 2004.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
المجمع العلمي يقيم ورشة تطويرية ودورة قرآنية في النجف والديوانية
|
|
|