Read More
Date: 3-2-2021
![]()
Date: 23-8-2020
![]()
Date: 1-10-2020
![]() |
The Fibonacci factorial constant is the constant appearing in the asymptotic growth of the fibonorials (aka. Fibonacci factorials) . It is given by the infinite product
![]() |
(1) |
where
![]() |
(2) |
and is the golden ratio.
It can be given in closed form by
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
(OEIS A062073), where is a q-Pochhammer symbol and
is a Jacobi theta function.
REFERENCES:
Finch, S. R. "Fibonacci Factorials." §1.2.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 10, 2003.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 478 and 571, 1994.
Plouffe, S. http://pi.lacim.uqam.ca/piDATA/fibofact.txt.
Sloane, N. J. A. Sequence A062073 in "The On-Line Encyclopedia of Integer Sequences."
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
ضمن مؤتمر ذاكرة الألم في العراق ورقة بحثية تتناول الأهداف والاستراتيجيات التي يعتمدها كرسي اليونسكو لتطوير دراسات حوار الأديان
|
|
|