تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Connectedness
المؤلف:
Jean-Claude Fournier
المصدر:
Graph Theory and Applications
الجزء والصفحة:
35-36
28-7-2016
1600
A G graph is said to be connected if any two vertices of this graph are linked by a path in G. Otherwise, the graph is a disconnected graph.
The connected components of a graph G are the maximal connected induced subgraphs of G. Maximal means here that the subgraph mentioned is not itself a proper subgraph, that is with strictly fewer vertices, of a connected subgraph of G. Obviously, a graph is connected if and only if it has only one connected component.
We verify that the connected components of a graph are subgraphs pairwise disjoint, that is having pairwise no common vertices and no common edges. It defines the decomposition into connected components of the graph (see Figure 1.1 for an example). This decomposition is unique.
Figure 1.1. A disconnected graph and its three connected components: C1,C2, C3
It is also possible to define in algebraic language the connected components of a graph G =(X,E) as the subgraphs induced by equivalence classes over X, defined by the relation: the vertices x and y are linked by a path. This binary relation is in fact an equivalence relation on the set X (reflexive, symmetric and transitive).
To finish connectedness, let us just mention the following proposition:
If a graph possesses a spanning subgraph which is connected, it is itself connected. This proposition is one of many small propositions which are often not proved or even stated. Nevertheless it is useful for a beginner in graph theory to practice by proving them rigorously at least once. If we can do this easily, then all is well, at least so far into the theory. If we do not succeed, we should go back over the preceding pages or maybe rethink our personal logic.
Graph Theory and Applications ,Jean-Claude Fournier, WILEY, page(35-36)