تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Coloring-Edge coloring
المؤلف:
Jean-Claude Fournier
المصدر:
Graph Theory and Applications
الجزء والصفحة:
65
27-7-2016
1882
The graphs studied are assumed to be without loops but may have multiple edges. The “simple” hypothesis thus will mean that the graph is without multiple edges. Given a graph G and an integer k, k-edge-coloring of G is a mapping from the set of the edges of G to a set of k elements called
Figure 1.1. A k-edge-coloring of a graph (set of colors: {α, β, γ, δ})
colors so that two edges sharing an endpoint are associated in the mapping with different colors.
Given a k-coloring, an edge is said to be of a given color or to have a given color, if in the coloring considered this color is associated with it.
The edge chromatic number of a graph G is the lowest integer k such that a k-coloring of G exists. This integer is denoted by q(G). For example, the chromatic index of the graph shown in Figure1.1 is 4 (check that for this graph there is no edge coloring with less than four colors). The important point of the concept of edge-coloring of a graph is the following property: for each color, the set of the edges having the same color forms what is called a matching, that is a set of edges of the graph such that no two edges share a common endpoint. A k-edge-coloring of a graph G can be seen, more or less a permutation of the colors, as an edge partition of G into matchings. The chromatic index is then the lowest number of classes of such a partition.
This point of view will become useful later.
Graph Theory and Applications ,Jean-Claude Fournier, WILEY, page(65)