1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Coloring-Edge coloring

المؤلف:  Jean-Claude Fournier

المصدر:  Graph Theory and Applications

الجزء والصفحة:  65

27-7-2016

1882

The graphs studied are assumed to be without loops but may have multiple edges. The “simple” hypothesis thus will mean that the graph is without multiple edges. Given a graph G and an integer k, k-edge-coloring of G is a mapping from the set of the edges of G to a set of k elements called

               Figure 1.1. A k-edge-coloring of a graph (set of colors: {α, β, γ, δ})

colors so that two edges sharing an endpoint are associated in the mapping with different colors.

Given a k-coloring, an edge is said to be of a given color or to have a given color, if in the coloring considered this color is associated with it.

The edge chromatic number of a graph G is the lowest integer k such that a k-coloring of G exists. This integer is denoted by q(G). For example, the chromatic index of the graph shown in Figure1.1 is 4 (check that for this graph there is no edge coloring with less than four colors). The important point of the concept of edge-coloring of a graph is the following property: for each color, the set of the edges having the same color forms what is called a matching, that is a set of edges of the graph such that no two edges share a common endpoint. A k-edge-coloring of a graph G can be seen, more or less a permutation of the colors, as an edge partition of G into matchings. The chromatic index is then the lowest number of classes of such a partition.

This point of view will become useful later.


Graph Theory  and Applications ,Jean-Claude Fournier, WILEY, page(65)

 

 

 

EN

تصفح الموقع بالشكل العمودي