تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bridges
المؤلف:
Jean-Claude Fournier
المصدر:
Graph Theory and Applications
الجزء والصفحة:
48-49
27-7-2016
1940
Tree characterizations
Theorem 1.1. The following conditions for a graph G are equivalent:
(1) G is a tree.
(2) G is connected and m = n − 1.
(3) G is acyclic and m = n − 1.
(4) G is connected and every edge is a bridge.
(5) In G any two given vertices are linked by a unique path.
Proof. The implications (1)⇒(2), (1)⇒(3), (1)⇒(4), (1)⇒(5), (3)⇒(1) result directly from the above propositions. Implication (4)⇒(1) is straightforward with lemma (An edge of a graph G is a bridge if and only if it does not belong to a cycle of G.) Implication (5)⇒(1) is easy:
if there was a cycle in G, one of its vertices would be joined to itself on the one hand by the cycle, considered as a (closed) path, and on the other hand by the path with of zero length that this vertex defines. This contradicts the hypothesis of the uniqueness of a path linking any two vertices. To end the proof, that is to verify that these implications are sufficient, we must demonstrate implication (2)⇒(1). Consider a graph G verifying (2). Remove, as long it is possible, an edge which is not a bridge (first in graph G, and then in the current graph obtained).
The spanning subgraph G/ obtained is connected, like G, because each of the edges removed was not a bridge. It is also an acyclic graph since it now has nothing but bridges and thus cannot have any cycle (An edge of a graph G is a bridge if and only if it does not belong to a cycle of G.).
This graph Gis therefore a tree, spanning a subgraph of G. Let m/ be the number of edges of G/.We have m/= n−1= m. Thus, G/having the same number of edges as G, G/= G and G is therefore a tree.
Graph Theory and Applications ,Jean-Claude Fournier, WILEY, page(48-49)