1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

An interesting illustration of trees

المؤلف:  Jean-Claude Fournier

المصدر:  Graph Theory and Applications

الجزء والصفحة:  49-52

26-7-2016

1966

If we think of the theory of vector spaces, it is impossible to fail to observe the analogy of the properties of spanning trees with the bases of vector Spaces.

         Figure 1.1. In bold: (a) the spanning tree T, (b) the spanning tree T/

bring to mind the classic exchange property between the bases of vector spaces. This proximity is not fortuitous and can be clarified in the following way. Let G =(X,E) be a connected graph. It is possible to define a vector space on the set E in which a set of edges F ⊆ E is linearly independent if, by definition, the induced spanning subgraph G(F) is acyclic, and F is a spanning subset if G(F) is connected. A basis of this vector space is thus a subset F which is linearly independent and which spans E, that is, such that the spanning subgraph G(F) is both acyclic and connected, that is a spanning tree of G. The sets of edges of the spanning trees of G are therefore the bases of this vector space. With propositions(A spanning subgraph of  a connected graph G is a spanning tree of G if and only if it is connected and edge-minimal. ) and (. A spanning subgraph of a connected graph G is a spanning tree of G if and only if it is acyclic and edge-maximal.) we recognize the classic characterization of the basis of a vector space: a minimal spanning subset or a  maximal linearly independent subset. We find directly the finitedimension of this vector space: it is the number of edges common to all spanning trees, that is  n−1, where n is the number of vertices of the graph.This algebraic aspect of the graphs is the starting point of a very important and interesting theory, the theory of matroids.

__________________________________________________________________________________________________________

Graph Theory  and Applications ,Jean-Claude Fournier, WILEY, page(49-52)

EN

تصفح الموقع بالشكل العمودي