تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Dimensional Relationships
المؤلف:
Barry Max Brandenberger, Jr
المصدر:
mathematics. VOLUME 2.
الجزء والصفحة:
...
11-1-2016
1720
Usually, when mathematicians compare the size of two-dimensional objects, they compare their areas. For example, how many times larger is a larger square than a smaller one? One way to answer this question is to determine the lengths of the sides of the squares, and use this information to find the respective areas.
Use the formula for the area of a square, A = S2, where A representsarea and S represents the side length of the square. Suppose two squares have side lengths of 2 and 6, respectively. Hence, the respective areas are 4 and 36. Thus the area of the larger square is nine times that of the smaller square. Therefore, a square whose side length is three times that of a second square will have an area nine times as great.
Use the notation S1 to denote the side of the smaller square and S2 to denote the side of the larger square. With this notation, S2 =3S1. The area of the larger square then becomes (3S1)2= 3S1 x3S1 =9S12. This can be generalized further by letting one side of the square be k times the side of another, also known as the ratio of similitude (k) between the figures. Then(kS1)2= kS1 xkS1 = k2S12. From this, it is evident that if the side lengths of one square are k times the side lengths of another, the area of the first is k2 that of the other.
This principle is true for any two-dimensional object. Suppose two circles have radii that are in the ratio of 2:1. Letting R2 =2R1, the area of the larger circle can be represented by A =π(2R1)2= 4πR12.
As another example, suppose the sides and altitude of the larger triangle are twice those of a smaller triangle. Thus the area of the larger triangle can be written as A = 1/2 (2b1)(2h1) =2b1h1= 4(1/2b1h1).
For three-dimensional objects, volumes of similar figures relate to each other in a manner akin to areas of twodimensional figures. A cube, for example, with a side length twice that of another cube, will have a volume 23 =8 times as great. A sphere with a radius five times that of a smaller sphere will have a volume 53 = 125 times as great.
If k represents the ratio of similitude of two similar objects, then the areas of the two objects will be in the ratio of k2, and the volumes of the two objects will be in the ratio of k3.
______________________________________________________________________________________________
Reference
Barry Max Brandenberger, Jr. mathematics. VOLUME 2. Macmillan Reference USA. 2002