تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Congruency, Equality, and Similarity
المؤلف:
Konkle, Gail S
المصدر:
Shapes and Perception: An Intuitive Approach to Geometry
الجزء والصفحة:
...
7-1-2016
1615
What does it mean to say that one square is “equal” to another? It probably seems reasonable to say that two squares are equal if they have sides of the same length. If two squares have equal areas, they will also have sides of the same length. But although “equal areas mean equal sides” is true for squares, it is not true for most geometric figures.
Consider the rectangles shown below. The areas of A and B and D are all 2 square units, but it is not reasonable to say that rectangle A “is equal to” rectangle D, although their areas are equal.
Geometry has a special mathematical language to describe some of these relationships. If Rectangle B is moved, turned on its side (rotation), and slid (translation), it would fit exactly in Rectangle A.
Two geometric figures are called congruent if they have the same size and the same shape. Two congruent figures can be made to coincide exactly. Rectangle A is congruent to Rectangle B. In mathematical notation, this is written as A ≅ B.
Look at the two polygons below. Are they congruent? Can one of the polygons be slid (translated), turned (rotated), and flipped (reflected) so that it can fit exactly over the other? The answer is yes, and therefore these two shapes are congruent. Their corresponding, or matching, angles are congruent and so are their corresponding sides.
Two are congruent if:
Line segments the measure of their lengths is the same
Circles they have congruent radii
Angles they have equal measure (degrees)
Polygons their corresponding parts (sides and angles)
are congruent
The congruence relationship ≅is reflexive (A ≅ A, because any figure is congruent to itself), symmetric (because A ≅ B means that B≅A), and transitive (because A ≅ B ≅F means that A ≅ F).
When an exact copy of a shape is made, the result is congruent shapes.
Sometimes, instead of making an exact copy, a scale model, or a drawing that is smaller or larger than the original, is made. Blueprints, copies of photos, miniatures, enlargements are all examples of a relationship that is somewhat different from congruence.
Look back at the figure that shows Rectangle A and Rectangle C. The sides of Rectangle A measure 1 unit by 2 units. The sides of Rectangle C measure 2 units by 4 units. The corresponding angles of the two rectangles are congruent. Rectangle A could be enlarged to look like Rectangle C, or C could be shrunk to look like A.
The mathematical term for shrinking or enlarging a figure is dilation. The sides of these two rectangles are proportional: 1:2= 2:4. When one figure can be made into another by dilation, the two figures are similar.
Two geometric figures are called similar if they have the same shape, so that their corresponding sides are proportional. Two similar figures may be of different sizes, but they always have the same shape.
Rectangle A is similar to Rectangle C. In mathematical notation, this is written as A ≈ C. Two congruent figures will always also be similar to each other, so A ≈B.
Look again at the rectangles. No matter how Rectangle D is dilated, translated, rotated, or reflected, it cannot be made to have the same shape as A or C. So D is neither congruent nor similar to any other rectangle in this figure.
______________________________________________________________________________________________
Reference
Konkle, Gail S. Shapes and Perception: An Intuitive Approach to Geometry. Boston: Prindle, Weber, & Schmidt, Inc., 1974.