تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Independence Number
المؤلف:
Bollobás, B
المصدر:
"The Independence Ratio of Regular Graphs." Proc. Amer. Math. Soc. 83
الجزء والصفحة:
...
1-5-2022
2232
The (upper) vertex independence number of a graph, often called simply "the" independence number, is the cardinality of the largest independent vertex set, i.e., the size of a maximum independent vertex set (which is the same as the size of a largest maximal independent vertex set). The independence number is most commonly denoted , but may also be written
(e.g., Burger et al. 1997) or
(e.g., Bollobás 1981).
The independence number of a graph is equal to the largest exponent in the graph's independence polynomial.
The lower independence number may be similarly defined as the size of a smallest maximal independent vertex set in
(Burger et al. 1997).
The lower irredundance number , lower domination number
, lower independence number
, upper independence number
, upper domination number
, and upper irredundance number
satsify the chain of inequalities
(1) |
(Burger et al. 1997).
The ratio of the independence number of a graph to its vertex count is known as the independence ratio of
(Bollobás 1981).
For a connected regular graph on
vertices with vertex degree
and smallest graph eigenvalue
,
(2) |
(A. E. Brouwer, pers. comm., Dec. 17, 2012).
For the graph radius,
(3) |
(DeLa Vina and Waller 2002). Lovasz (1979, p. 55) showed that when is the path covering number,
(4) |
with equality for only complete graphs (DeLa Vina and Waller 2002).
The matching number of a graph
is equal to the independence number
of its line graph
.
By definition,
(5) |
where is the vertex cover number of
and
its vertex count (West 2000).
Known value for some classes of graph are summarized below.
graph |
OEIS | values | |
alternating group graph |
A000000 | 1, 1, 4, 20, 120, ... | |
A000027 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... | ||
A004523 | 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, ... | ||
A000244 | 1, 3, 9, 27, 81, 243, 729, 2187, ... | ||
complete bipartite graph |
A000027 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... | |
complete graph |
1 | A000012 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... |
complete tripartite graph |
A000027 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... | |
cycle graph |
A004526 | 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... | |
empty graph |
A000027 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... | |
A058622 | 1, 1, 4, 5, 16, 22, 64, 93, 256, ... | ||
grid graph |
A000982 | 1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, ... | |
grid graph |
A036486 | 1, 4, 14, 32, 63, 108, 172, 256, 365, 500, ... | |
A005864 | 1, 1, 4, 5, 16, 22, 64, 93, 256, ... | ||
A000244 | 1, 3, 9, 27, 81, 243, 729, 2187, ... | ||
hypercube graph |
A000079 | 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... | |
A258935 | 4, 5, 8, 16, 32, 64, 128, 256, 512, ... | ||
A008794 | 1, 4, 4, 9, 9, 16, 16, 25, 25 | ||
A030978 | 4, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, ... | ||
Kneser graph |
|||
A266550 | 1, 1, 2, 5, 11, 23, 47, 95, 191, 383, 767, ... | ||
Möbius ladder |
A109613 | 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, ... | |
odd graph |
A000000 | 1, 1, 4, 15, 56, 210, 792, 3003, 11440, ... | |
A000000 | 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, ... | ||
path graph |
A004526 | 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ... | |
prism graph |
A052928 | 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, ... | |
4, 32, 256, ... | |||
1, 3, 6, 15, 42, ... | |||
star graph |
A028310 | 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... | |
triangular graph |
A004526 | 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ... | |
A032766 | 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, ... | ||
wheel graph |
A004526 | 1, 2, 2, 3, 3, 4, 4, 5, 5, ... |
Precomputed independence numbers for many named graphs can be obtained in the Wolfram Language using GraphData[graph, "IndependenceNumber"].
Bollobás, B. "The Independence Ratio of Regular Graphs." Proc. Amer. Math. Soc. 83, 433-436, 1981.
Burger, A. P.; Cockayne, E. J.; and Mynhardt, C. M. "Domination and Irredundance in the Queens' Graph." Disc. Math. 163, 47-66, 1997.
Cockayne, E. J. and Mynhardt, C. M. "The Sequence of Upper and Lower Domination, Independence and Irredundance Numbers of a Graph." Disc. Math. 122, 89-102, 1993).
DeLa Vina, E. and Waller, B. "Independence, Radius and Path Coverings in Trees." Congr. Numer. 156, 155-169, 2002.
Lovasz, L. Combinatorial Problems and Exercises. Academiai Kiado, 1979.
Skiena, S. "Maximum Independent Set" §5.6.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 218-219, 1990.
Sloane, N. J. A. Sequences A000012/M0003, A000027/M0472, A000079/M1129, A000244/M2807, A000982/M1348, A004523, A004526, A005864/M1111, A008794, A028310, A030978, A032766, A036486, A052928, A058622, A109613, A258935, and A266550West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2000.