تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Tutte Conjecture
المؤلف:
Bondy, J. A. and Murty, U. S. R
المصدر:
Graph Theory with Applications. New York: North Holland
الجزء والصفحة:
...
29-4-2022
2509
Tutte (1971/72) conjectured that there are no 3-connected nonhamiltonian bicubic graphs. However, a counterexample was found by J. D. Horton in 1976 (Gropp 1990), and several smaller counterexamples are now known.
Known small counterexamples are summarized in the following table and illustrated above.
name | reference | |
50 | Georges graph | Georges (1989), Grünbaum (2006, 2009) |
54 | Ellingham-Horton 54-graph | Ellingham and Horton (1983) |
78 | Ellingham-Horton 78-graph | Ellingham (1981, 1982) |
78 | Owens graph | Owens (1983) |
92 | Horton 92-graph | Horton (1982) |
96 | Horton 96-graph | Bondy and Murty (1976) |
Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, pp. 61 and 242, 1976.
Bondy, A. and Murty, U. S. R. Graph Theory. Berlin: Springer-Verlag, pp. 487-488, 2008.
Ellingham, M. N. "Non-Hamiltonian 3-Connected Cubic Partite Graphs." Research Report No. 28, Dept. of Math., Univ. Melbourne, Melbourne, 1981.
Ellingham, M. N. "Constructing Certain Cubic Graphs." In Combinatorial Mathematics, IX: Proceedings of the Ninth Australian Conference held at the University of Queensland, Brisbane, August 24-28, 1981 (Ed. E. J. Billington, S. Oates-Williams, and A. P. Street). Berlin: Springer-Verlag, pp. 252-274, 1982.
Ellingham, M. N. and Horton, J. D. "Non-Hamiltonian 3-Connected Cubic Bipartite Graphs." J. Combin. Th. Ser. B 34, 350-353, 1983.
Georges, J. P. "Non-Hamiltonian Bicubic Graphs." J. Combin. Th. B 46, 121-124, 1989.
Gropp, H. "Configurations and the Tutte Conjecture." Ars. Combin. A 29, 171-177, 1990.
Grünbaum, B. "3-Connected Configurations with No Hamiltonian Circuit." Bull. Inst. Combin. Appl. 46, 15-26, 2006.
Grünbaum, B. Configurations of Points and Lines. Providence, RI: Amer. Math. Soc., p. 311, 2009.
Horton, J. D. "On Two-Factors of Bipartite Regular Graphs." Disc. Math. 41, 35-41, 1982.Owens, P. J. "Bipartite Cubic Graphs and a Shortness Exponent." Disc. Math. 44, 327-330, 1983.
Tutte, W. T. "On the 2-Factors of Bicubic Graphs." Disc. Math. 1, 203-208, 1971/72.