1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Graph Coarseness

المؤلف:  Beineke, L. W. and Chartrand, G

المصدر:  "The Coarseness of a Graph." Compos. Math. 19

الجزء والصفحة:  ...

23-4-2022

2620

Graph Coarseness

The coarseness xi(G) of a graph G is the maximum number of edge-disjoint nonplanar subgraphs contained in a given graph G. The coarseness of a planar graph G is therefore xi(G)=0.

The coarseness of a graph is the sum of the coarsenesses of its blocks (Beineke and Chartrand 1968).

The coarseness of the complete graph K_n is known for most values of n except n=13n divisible by 3 and greater than or equal to 18, and n of the form 9k+7. For all of these, the values are known to within 1 (Guy and Beineke 1968; Harary 1994, pp. 121-122).

The coarseness of the complete bipartite graph K_(m,n) is known for values of m,n satisfying certain conditions (Beineke and Guy 1969; Harary 1994, pp. 121-122).


REFERENCES

Beineke, L. W. and Chartrand, G. "The Coarseness of a Graph." Compos. Math. 19, 290-298, 1968.

Beineke, L. W. and Guy, R. K. "The Coarseness of the Complete Bipartite Graph." Canad. J. Math. 21, 1086-1096, 1969.

Guy, R. and Beineke, L. "'THe Coarseness of the Complete Graph." Canad. J. Math. 20, 888-894, 1968.

Harary, F. "Covering and Packing in Graphs, I." Ann. New York Acad. Sci. 175, 198-205, 1970.

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, pp. 121-122, 1994.

Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, p. 225, 1973.

Harary, F. and Palmer, E. M. "A Survey of Graph Enumeration Problems." In A Survey of Combinatorial Theory (Ed. J. N. Srivastava). Amsterdam: North-Holland, pp. 259-275, 1973.

EN

تصفح الموقع بالشكل العمودي