تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Planar Straight Line Embedding
المؤلف:
Bondy, J. A. and Murty, U. S. R
المصدر:
Graph Theory with Applications. New York: North Holland
الجزء والصفحة:
...
6-4-2022
2746
A planar straight line embedding of a planar graph is a planar embedding in which only straight line segments are used to connect the graph vertices. Fáry (1948) showed that every planar graph has a planar straight line embedding with noncrossing edges (Bryant 1989; Skiena 1990, pp. 100 and 251; Scheinerman and Wilf 1994), and such embeddings (with rectilinear crossing number 0) are sometimes known as a Fáry embedding.
A planar straight line embedding of a planar graph can be constructed in the Wolfram Language using the "PlanarEmbedding" option to GraphLayout or in the Wolfram Language using PlanarGraph[g].
de Fraysseix et al. (1988) give an algorithm for constructing a planar straight line embedding for a planar graph of order by placing the vertices on a
grid (Skiena 1990, p. 251).
Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 139, 1976.
Bryant, V. W. "Straight Line Representation of Planar Graphs." Elem. Math. 44, 64-66, 1989.
de Fraysseix, H.; Pach, J; and Pollack, R. "Small Sets Supporting Fáry Embeddings of Planar Graphs." Proc. of the 20th Symposium on the Theory of Computing. ACM, pp. 426-433, 1988.
Fáry, I. "On Straight Line Representations of Planar Graphs." Acta Sci. Math. (Szeged( 11, 229-233, 1948.
Gross, J. T. and Yellen, J. Graph Theory and Its Applications. Boca Raton, FL: CRC Press, pp. 629 and 638, 1999.
Scheinerman, E. and Wilf, H. S. "The Rectilinear Crossing Number of a Complete Graph and Sylvester's 'Four Point' Problem of Geometric Probability." Amer. Math. Monthly 101, 939-943, 1994.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, p. 247, 2000.