تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Fractional Chromatic Number
المؤلف:
Bollobás, B. and Thomassen, A.
المصدر:
"Set Colorourings of Graphs." Disc. Math. 25
الجزء والصفحة:
...
27-3-2022
1608
Let be a fractional coloring of a graph
. Then the sum of values of
is called its weight, and the minimum possible weight of a fractional coloring is called the fractional chromatic number
, sometimes also denoted
(Pirnazar and Ullman 2002, Scheinerman and Ullman 2011) or
(Larson et al. 1995), and sometimes also known as the set-chromatic number (Bollobás and Thomassen 1979), ultimate chromatic number (Hell and Roberts 1982), or multicoloring number (Hilton et al. 1973). Every simple graph has a fractional chromatic number which is a rational number or integer.
The fractional chromatic number of a graph can be obtained using linear programming, although the computation is NP-hard.
The fractional chromatic number of any tree and any bipartite graph is 2 (Pirnazar and Ullman 2002).
The fractional chromatic number satisfies
(1) |
where is the clique number,
is the fractional clique number, and
is the chromatic number (Godsil and Royle 2001, pp. 141 and 145), where the result
follows from the strong duality theorem for linear programming (Larson et al. 1995; Godsil and Royle 2001, p. 141).
The fractional chromatic number of a graph may be an integer that is less than the chromatic number. For example, for the Chvátal graph, but
. Integer differences greater than one are also possible, for example, at least four of the non-Cayley vertex-transitive graphs on 28 vertices have
, and many Kneser graphs have larger integer differences.
For any graph ,
(2) |
where is the vertex count and
is the independence number of
. Equality always holds for a vertex-transitive
, in which case
(3) |
(Scheinerman and Ullman 2011, p. 30). However, equality may also hold for graphs that are not vertex-transitive, including for the path graph , claw graph
, diamond graph, etc.
Closed forms for the fractional chromatic number of special classes of graphs are given in the following table, where the Mycielski graph is discussed by Larsen et al. (1995), the cycle graphs
by Scheinerman and Ullman (2011, p. 31), and the Kneser graph
by Scheinerman and Ullman (2011, p. 32).
graph | fractional chromatic number |
cycle graph |
|
Kneser graph |
|
Mycielski graph |
Other special cases are given in the following table.
antiprism graph | 3, 4, 10/3, 3, 7/2, 16/5, 3, 10/3, 22/7, ... | |
barbell graph | A000027 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ... |
cocktail party graph |
A000027 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ... |
complete graph |
A000027 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ... |
cycle graph |
A141310/A057979 | 3, 2, 5/2, 2, 7/3, 2, 9/4, 2, 11/5, 2, 13/6, ... |
empty graph |
A000012 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... |
helm graph | 4, 3, 7/2, 3, 10/3, 3, 13/4, 3, ... | |
Mycielski graph |
A073833/A073834 | 2, 5/2, 29/10, 941/290, 969581/272890, ... |
pan graph | A141310/A057979 | 3, 2, 5/2, 2, 7/3, 2, 9/4, 2, 11/5, 2, 13/6, ... |
prism graph |
A141310/A057979 | 3, 2, 5/2, 2, 7/3, 2, 9/4, 2, 11/5, 2, 13/6, ... |
sun graph | A000027 | 3, 4, 5, 6, 7, 8, 9, 10, 11, ... |
sunlet graph |
A141310/A057979 | 3, 2, 5/2, 2, 7/3, 2, 9/4, 2, 11/5, 2, 13/6, ... |
web graph | 5/2, 2, 9/4, 2, 13/6, 2, 17/8, 2, 21/10, 2, 25/12, ... | |
wheel graph |
4, 3, 7/2, 3, 10/3, 3, 13/4, 3, 16/5, 3, 19/6, 3, ... |
Bollobás, B. and Thomassen, A. "Set Colorourings of Graphs." Disc. Math. 25, 27-31, 1979.
Godsil, C. and Royle, G. "Fractional Chromatic Number." §7.3 in Algebraic Graph Theory. New York: Springer-Verlag, pp. 137-138, 2001.
Hell, P. and Roberts, F. "Analogues of the Shannon Capacity of a Graph." Ann. Disc. Math. 12, 155-162, 1982.
Hilton, A. J. W.; Rado. R.; and Scott, S. H. "A -Colour Theorem for Planar Graphs." Bull. London Math. Soc. 5, 302-306, 1973.
Larsen, M.; Propp, J.; and Ullman, D. "The Fractional Chromatic Number of Mycielski's Graphs." J. Graph Th. 19, 411-416, 1995.
Lovász, L. "Semidefinite Programs and Combinatorial Optimization." In Recent Advances in Algorithms and Combinatorics (Ed. B. A. Reed and C. L. Sales). New York: Springer, pp .137-194, 2003,
Pirnazar, A. and Ullman, D. H. "Girth and Fractional Chromatic Number of Planar Graphs." J. Graph Th. 39, 201-217, 2002.
Scheinerman, E. R. and Ullman, D. H. Fractional Graph Theory A Rational Approach to the Theory of Graphs. New York: Dover, 2011.
Sloane, N. J. A. Sequences A000012/M0003, A000027/M0472, A057979, A073833, A073834, and A141310 in "The On-Line Encyclopedia of Integer Sequences."