1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Chromatic Number

المؤلف:  Bollobás, B. and West, D. B

المصدر:  "A Note on Generalized Chromatic Number and Generalized Girth." Discr. Math. 213

الجزء والصفحة:  ...

24-3-2022

3273

Chromatic Number

 

ChromaticNumber

The chromatic number of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color (Skiena 1990, p. 210), i.e., the smallest value of k possible to obtain a k-coloring. Minimal colorings and chromatic numbers for a sample of graphs are illustrated above.

The chromatic number of a graph G is most commonly denoted chi(G) (e.g., Skiena 1990, West 2000, Godsil and Royle 2001, Pemmaraju and Skiena 2003), but occasionally also gamma(G).

Empty graphs have chromatic number 1, while non-empty bipartite graphs have chromatic number 2.

The chromatic number of a graph G is also the smallest positive integer z such that the chromatic polynomial pi_G(z)>0. Calculating the chromatic number of a graph is an NP-complete problem (Skiena 1990, pp. 211-212). Or, in the words of Harary (1994, p. 127), "no convenient method is known for determining the chromatic number of an arbitrary graph." However, Mehrotra and Trick (1996) devised a column generation algorithm for computing chromatic numbers and vertex colorings which solves most small to moderate-sized graph quickly.

Computation of the chromatic number of a graph is implemented in the Wolfram Language as VertexChromaticNumber[g]. Precomputed chromatic numbers for many named graphs can be obtained using GraphData[graph"ChromaticNumber"].

The chromatic number of a graph must be greater than or equal to its clique number. A graph is called a perfect graph if, for each of its induced subgraphs g_i, the chromatic number of g_i equals the largest number of pairwise adjacent vertices in g_i. A graph for which the clique number is equal to the chromatic number (with no further restrictions on induced subgraphs) is said to be weakly perfect.

By definition, the edge chromatic number of a graph G equals the chromatic number of the line graph L(G).

Brooks' theorem states that the chromatic number of a graph is at most the maximum vertex degree Delta, unless the graph is complete or an odd cycle, in which case Delta+1 colors are required.

A graph with chromatic number <=2 is said to be bicolorable, and a graph with chromatic number <=3 is said to be three-colorable. In general, a graph with chromatic number k is said to be an k-chromatic graph, and a graph with chromatic number <=k is said to be k-colorable.

The following table gives the chromatic numbers for some named classes of graphs.

graph G gamma(G)
complete graph K_n n
cycle graph C_nn>1 <span style={3 for n odd; 2 for n even" src="https://mathworld.wolfram.com/images/equations/ChromaticNumber/Inline27.svg" style="height:61px; width:121px" />
star graph S_nn>1 2
wheel graph W_nn>2 <span style={3 for n odd; 4 for n even" src="https://mathworld.wolfram.com/images/equations/ChromaticNumber/Inline32.svg" style="height:61px; width:121px" />

For any two positive integers g and k, there exists a graph of girth at least g and chromatic number at least k (Erdős 1961; Lovász 1968; Skiena 1990, p. 215).

The chromatic number of a surface of genus g is given by the Heawood conjecture,

 gamma(g)=|_1/2(7+sqrt(48g+1))_|,

where |_x_| is the floor function. gamma(g) is sometimes also denoted chi(g) (which is unfortunate, since chi(g)=2-2g commonly refers to the Euler characteristic). For g=0, 1, ..., the first few values of chi(g) are 4, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, ... (OEIS A000934).

Erdős (1959) proved that there are graphs with arbitrarily large girth and chromatic number (Bollobás and West 2000).


REFERENCES

Bollobás, B. and West, D. B. "A Note on Generalized Chromatic Number and Generalized Girth." Discr. Math. 213, 29-34, 2000.

Chartrand, G. "A Scheduling Problem: An Introduction to Chromatic Numbers." §9.2 in Introductory Graph Theory. New York: Dover, pp. 202-209, 1985.

Eppstein, D. "The Chromatic Number of the Plane." http://www.ics.uci.edu/~eppstein/junkyard/plane-color.html.Erdős, P. "Graph Theory and Probability." Canad. J. Math. 11, 34-38, 1959.

Erdős, P. "Graph Theory and Probability II." Canad. J. Math. 13, 346-352, 1961.

Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, p. 9, 1984.

Godsil, C. and Royle, G. Algebraic Graph Theory. New York: Springer-Verlag, 2001.Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.

Lovász, L. "On Chromatic Number of Finite Set-Systems." Acta Math. Acad. Sci. Hungar. 19, 59-67, 1968.

Mehrotra, A. and Trick, M. A. "A Column Generation Approach for Graph Coloring." INFORMS J. on Computing 8, 344-354, 1996.

 https://mat.tepper.cmu.edu/trick/color.pdf.Pemmaraju, S. and Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, 2003.

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.

Sloane, N. J. A. Sequences A000012/M0003, A000934/M3292, A068917, A068918, and A068919 in "The On-Line Encyclopedia of Integer Sequences."Trick, West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 2000.

EN

تصفح الموقع بالشكل العمودي