تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bipartite Graph
المؤلف:
Chartrand, G.
المصدر:
Introductory Graph Theory. New York: Dover
الجزء والصفحة:
...
24-3-2022
1846
A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent. A bipartite graph is a special case of a k-partite graph with . The illustration above shows some bipartite graphs, with vertices in each graph colored based on to which of the two disjoint sets they belong.
Bipartite graphs are equivalent to two-colorable graphs. All acyclic graphs are bipartite. A cyclic graph is bipartite iff all its cycles are of even length (Skiena 1990, p. 213).
Families of of bipartite graphs include
1. acyclic graphs (i.e., trees and forests),
2. book graphs ,
3. crossed prism graphs,
4. crown graphs ,
5. cycle graphs ,
6. gear graphs,
7. grid graphs,
8. Haar graphs,
9. Hadamard graphs,
10. hypercube graphs ,
11. knight graphs,
12. ladder graphs,
13. ladder rung graphs (which are forests).
14. path graphs (which are trees),
15. Mongolian tent graphs,
16. Sierpiński carpet graphs,
17. stacked book graphs,
18. star graphs (which are trees).
König's line coloring theorem states that every bipartite graph is a class 1 graph. The König-Egeváry theorem states that the matching number (i.e., size of a maximum independent edge set) equals the vertex cover number (i.e., size of the smallest minimum vertex cover) are equal for a bipartite graph.
A graph may be tested in the Wolfram Language to see if it is a bipartite graph using BipartiteGraphQ[g], and the indices of one of the components of a bipartite graph can be found using FindIndependentVertexSet[g][[1]].
The numbers of bipartite graphs on , 2, ... nodes are 1, 2, 3, 7, 13, 35, 88, 303, ... (OEIS A033995).
The numbers of connected bipartite graphs on , 2 ... nodes are 1, 1, 1, 3, 5, 17, 44, 182, ... (OEIS A005142).
Chartrand, G. Introductory Graph Theory. New York: Dover, p. 116, 1985.
Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, 1998.
Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, p. 12, 1986.
Skiena, S. "Coloring Bipartite Graphs." §5.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 213, 1990.
Sloane, N. J. A. Sequence A033995 in "The On-Line Encyclopedia of Integer Sequences."Steinbach, P. Field Guide to Simple Graphs. Albuquerque, NM: Design Lab, 1990.