1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Bipartite Graph

المؤلف:  Chartrand, G.

المصدر:  Introductory Graph Theory. New York: Dover

الجزء والصفحة:  ...

24-3-2022

1846

Bipartite Graph

 

BipartiteGraph

A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent. A bipartite graph is a special case of a k-partite graph with k=2. The illustration above shows some bipartite graphs, with vertices in each graph colored based on to which of the two disjoint sets they belong.

Bipartite graphs are equivalent to two-colorable graphs. All acyclic graphs are bipartite. A cyclic graph is bipartite iff all its cycles are of even length (Skiena 1990, p. 213).

Families of of bipartite graphs include

1. acyclic graphs (i.e., trees and forests),

2. book graphs S_(n+1) square P_2,

3. crossed prism graphs,

4. crown graphs K_2 square K_n^_,

5. cycle graphs C_(2k),

6. gear graphs,

7. grid graphs,

8. Haar graphs,

9. Hadamard graphs,

10. hypercube graphs Q_n,

11. knight graphs,

12. ladder graphs,

13. ladder rung graphs nP_2 (which are forests).

14. path graphs P_n (which are trees),

15. Mongolian tent graphs,

16. Sierpiński carpet graphs,

17. stacked book graphs,

18. star graphs S_n (which are trees).

König's line coloring theorem states that every bipartite graph is a class 1 graph. The König-Egeváry theorem states that the matching number (i.e., size of a maximum independent edge set) equals the vertex cover number (i.e., size of the smallest minimum vertex cover) are equal for a bipartite graph.

A graph may be tested in the Wolfram Language to see if it is a bipartite graph using BipartiteGraphQ[g], and the indices of one of the components of a bipartite graph can be found using FindIndependentVertexSet[g][[1]].

BipartiteGraphs

The numbers of bipartite graphs on n=1, 2, ... nodes are 1, 2, 3, 7, 13, 35, 88, 303, ... (OEIS A033995).

BipartiteConnectedGraphs

The numbers of connected bipartite graphs on n=1, 2 ... nodes are 1, 1, 1, 3, 5, 17, 44, 182, ... (OEIS A005142).


REFERENCES

Chartrand, G. Introductory Graph Theory. New York: Dover, p. 116, 1985.

Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, 1998.

Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, p. 12, 1986.

Skiena, S. "Coloring Bipartite Graphs." §5.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 213, 1990.

Sloane, N. J. A. Sequence A033995 in "The On-Line Encyclopedia of Integer Sequences."Steinbach, P. Field Guide to Simple Graphs. Albuquerque, NM: Design Lab, 1990.

EN

تصفح الموقع بالشكل العمودي