1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Graph Bridge

المؤلف:  Chartrand, G

المصدر:  "Cut-Vertices and Bridges." §2.4 in Introductory Graph Theory. New York: Dover,

الجزء والصفحة:  ...

18-3-2022

1901

Graph Bridge

 

Bridges

A bridge of a connected graph is a graph edge whose removal disconnects the graph (Chartrand 1985, p. 45; Skiena 1990, p. 177). More generally, a bridge is an edge of a not-necessarily-connected graph G whose removal increases the number of components of G (Harary 1994, p. 26; West 2000, p. 23).

An edge of a connected graph is a bridge iff it does not lie on any cycle. A bridge therefore cannot be a cycle chord.

A bridge is also known as an isthmus, cut-edge (West 2000, p. 23), or cut arc.

Every edge of a tree is a bridge. A connected cubic graph contains a bridge iff it contains an articulation vertex (Skiena 1990, p. 177), i.e., if it is not a biconnected graph.

A graph containing one or more bridges is said to be a bridged graph, while a graph containing no bridges is called a bridgeless graph.

The Wolfram Language function FindEdgeCut[g] returns an edge cut of smallest size for a graph, which corresponds to a graph bridge if the set is of size 1. Precomputed bridges for many named graphs can be listed using GraphData[graph"Bridges"].

The analog of a graph bridge for vertices is called an articulation vertex.


REFERENCES

Chartrand, G. "Cut-Vertices and Bridges." §2.4 in Introductory Graph Theory. New York: Dover, pp. 45-49, 1985.

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 171 and 177, 1990.

West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 155-158, 2000.

EN

تصفح الموقع بالشكل العمودي