تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Tournament
المؤلف:
Chartrand, G
المصدر:
"Tournaments." §27.2 in Introductory Graph Theory. New York: Dover
الجزء والصفحة:
...
13-3-2022
2750
A complete oriented graph (Skiena 1990, p. 175), i.e., a graph in which every pair of nodes is connected by a single uniquely directed edge. The first and second 3-node tournaments shown above are called a transitive triple and cyclic triple, respectively (Harary 1994, p. 204).
Tournaments (also called tournament graphs) are so named because an -node tournament graph correspond to a tournament in which each member of a group of
players plays all other
players, and each game results in a win for one player and a loss for the other. A so-called score sequence can be associated with every tournament giving the set of scores that would be obtained by the players in the tournament, with each win counting as one point and each loss counting as no points. (A different scoring system is used to compute a tournament's so-called tournament matrix, with 1 point awarded for a win and
points for a loss.) The score sequence for a given tournament is obtained from the set of outdegrees sorted in nondecreasing order.
The number of nonisomorphic tournaments on
, 3, 4, ... nodes are 1, 2, 4, 12, 56, 456, ... (OEIS A000568; Moon 1968; Goldberg and Moon 1970; Harary and Palmer 1973, pp. 126 and 245; Reid and Beineke 1978). Davis (1954) and Harary (1957) obtained a formula for these numbers as a function of
using the Pólya enumeration theorem. For a symmetric group
, define
(1) |
where
(2) |
with the number of group elements in the conjugacy class of
in
, and
is the number of cycles of length
in the disjoint-cycle representation of any member of the class. Define
(3) |
where is the greatest common divisor of
and
. Then
(4) |
(Davis 1954).
Every tournament contains an odd number of Hamiltonian paths (Rédei 1934; Szele 1943; Skiena 1990, p. 175). However, a tournament has a directed Hamiltonian cycle iff it is strongly connected (Foulkes 1960; Harary and Moser 1966; Skiena 1990, p. 175).
The term "tournament" also refers to an arrangement by which teams or players play against certain other teams or players in order to determine who is the best. In a "cup" tournament of teams, teams play pairwise in a sequence of
-finals, ..., 1/8-finals, quarterfinals, semifinals, and finals, with winners from each round playing other winners in the next round and losers being eliminated at each round. The second-place prize is usually awarded to the team that loses in the finals. However, this practice is unfair since the second-place team has not been required to play against the teams that were eliminated by the first-place (and presumably best) team, and therefore might actually be worse than one of the teams eliminated earlier by the best team (Steinhaus 1999).
In general, to fairly determine the best two players from contestants,
rounds are required (Steinhaus 1999, p. 55).
Boesch, F. and Tindell, R. "Robbins' Theorem for Mixed Graphs." Amer. Math. Monthly 87, 716-719, 1980.
Chartrand, G. "Tournaments." §27.2 in Introductory Graph Theory. New York: Dover, pp. 155-161, 1985.
Chvátal, V. and Thomassen, C. "Distances in Orientations of Graphs." J. Combin. Th. B 24, 61-75, 1978.
Davis, R. L. "Structure of Dominance Relations." Bull. Math. Biophys. 16, 131-140, 1954.
Foulkes, J. D. "Directed Graphs and Assembly Schedules." In Proc. Symp. Appl. Math. Providence, RI: Amer. Math. Soc., pp. 218-289, 1960.
Goldberg, M. and Moon, J. W. "On the Composition of Two Tournaments." Duke Math. J. 37, 323-332, 1970.
Harary, F. "The Number of Oriented Graphs." Mich. Math. J. 4, 221-224, 1957.
Harary, F. "Tournaments." In Graph Theory. Reading, MA: Addison-Wesley, pp. 204-208, 1994.
Harary, F. and Moser, L. "The Theory of Round Robin Tournaments." Amer. Math. Monthly 73, 231-246, 1966.
Harary, F. and Palmer, E. M. "On the Problem of Reconstructing a Tournament from Subtournaments." Monatsh. für Math. 71, 14-23, 1967.
Harary, F. and Palmer, E. M. "Tournaments." §5.2 in Graphical Enumeration. New York: Academic Press, pp. 124-127, 1973.
Moon, J. W. Topics on Tournaments. New York: Holt, Rinehart, and Winston, p. 87, 1968.
Ore, Ø. Graphs and Their Uses. New York: Random House, 1963.Rédei, L. "Ein Kombinatorischer Satz." Acta Litt. Szeged. 7, 39-43, 1934.
Reid, K. B. and Beineke, L. W. "Tournaments." In Selected Topics in Graph Theory (Ed. L. W. Beineke and R. J. Wilson). New York: Academic Press, pp. 169-204, 1978.
Roberts, F. S. Graph Theory and Its Applications to Problems of Society. Philadelphia, PA: SIAM, 1978.
Ruskey, F. "Information on Score Sequences." http://www.theory.csc.uvic.ca/~cos/inf/nump/ScoreSequence.html.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.
Sloane, N. J. A. Sequence A000568/M1262 in "The On-Line Encyclopedia of Integer Sequences."Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 54-55, 1999.
Szele, T. "Kombinatorische Untersuchungen über den gerichteten vollständigen Graphen." Mat. Fiz. Lapok 50, 223-256, 1943.