تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Hamiltonian Graph
المؤلف:
Bollobás, B
المصدر:
Graph Theory: An Introductory Course. New York: Springer-Verlag
الجزء والصفحة:
...
1-3-2022
2643
A Hamiltonian graph, also called a Hamilton graph, is a graph possessing a Hamiltonian cycle. A graph that is not Hamiltonian is said to be nonhamiltonian.
A Hamiltonian graph on nodes has graph circumference
.
While it would be easy to make a general definition of "Hamiltonian" that goes either way as far as the singleton graph is concerned, defining "Hamiltonian" to mean "has a Hamiltonian cycle" and taking "Hamiltonian cycles" to be a subset of "cycles" in general would lead to the convention that the singleton graph is nonhamiltonian (B. McKay, pers. comm., Oct. 11, 2006). However, by convention, the singleton graph is generally considered to be Hamiltonian (B. McKay, pers. comm., Mar. 22, 2007). The convention in this work and in GraphData is that
is Hamiltonian, while
is nonhamiltonian.
The numbers of simple Hamiltonian graphs on nodes for
, 2, ... are then given by 1, 0, 1, 3, 8, 48, 383, 6196, 177083, ... (OEIS A003216).
A graph can be tested to see if it is Hamiltonian in the Wolfram Language using HamiltonianGraphQ[g].
Testing whether a graph is Hamiltonian is an NP-complete problem (Skiena 1990, p. 196). Rubin (1974) describes an efficient search procedure that can find some or all Hamilton paths and circuits in a graph using deductions that greatly reduce backtracking and guesswork.
All Hamiltonian graphs are biconnected, although the converse is not true (Skiena 1990, p. 197). Any bipartite graph with unbalanced vertex parity is not Hamiltonian.
If the sums of the degrees of nonadjacent vertices in a graph is greater than the number of nodes
for all subsets of nonadjacent vertices, then
is Hamiltonian (Ore 1960; Skiena 1990, p. 197).
All planar 4-connected graphs have Hamiltonian cycles, but not all polyhedral graphs do. For example, the smallest polyhedral graph that is not Hamiltonian is the Herschel graph on 11 nodes.
All Platonic solids are Hamiltonian (Gardner 1957), as illustrated above.
Although not explicitly stated by Gardner (1957), all Archimedean solids have Hamiltonian circuits as well, several of which are illustrated above. However, the skeletons of the Archimedean duals (i.e., the Archimedean dual graphs are not necessarily Hamiltonian, as shown by Coxeter (1946) and Rosenthal (1946) for the rhombic dodecahedron (Gardner 1984, p. 98).
Bollobás, B. Graph Theory: An Introductory Course. New York: Springer-Verlag, p. 12, 1979.
Chartrand, G. Introductory Graph Theory. New York: Dover, p. 68, 1985.
Chartrand, G.; Kapoor, S. F.; and Kronk, H. V. "The Many Facets of Hamiltonian Graphs." Math. Student 41, 327-336, 1973.
Coxeter, H. S. M. "Problem E 711." Amer. Math. Monthly 53, 156, 1946.
Dolch, J. P. "Names of Hamiltonian Graphs." In 4th S-E Conf. Combin., Graph Theory, Computing. Congress. Numer. 8, 259-271, 1973.
Gardner, M. "Mathematical Games: About the Remarkable Similarity between the Icosian Game and the Towers of Hanoi." Sci. Amer. 196, 150-156, May 1957.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 96-97, 1984.
Gould, R. J. "Updating the Hamiltonian Problem--A Survey."n.d. http://www.mathcs.emory.edu/~rg/updating.pdf.Hamilton, W. R. Quart. J. Math., 5, 305, 1862.
Hamilton, W. R. Philos. Mag. 17, 42, 1884.
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p. 4, 1994.
Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, p. 219, 1973
.Herschel, A. S. "Sir Wm. Hamilton's Icosian Game." Quart. J. Pure Applied Math. 5, 305, 1862.
Lucas, E. Récréations mathématiques, Vol. 2. Paris: Gauthier-Villars, pp. 201 and 208-255, 1891.
Ore, O. "A Note on Hamiltonian Circuits." Amer. Math. Monthly 67, 55, 1960.
Rosenthal, A. "Solution to Problem E 711: Sir William Hamilton's Icosian Game." Amer. Math. Monthly 53, 593, 1946.
Rubin, F. "A Search Procedure for Hamilton Paths and Circuits." J. ACM 21, 576-580, 1974.
Skiena, S. "Hamiltonian Cycles." §5.3.4 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 196-198, 1990.
Sloane, N. J. A. Sequence A003216/M2764 in "The On-Line Encyclopedia of Integer Sequences."