تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Chordal Graph
المؤلف:
Blair, J. R. S. and Peyton, B. W.
المصدر:
"An Introduction to Chordal Graphs and Clique Trees." In Graph Theory and Sparse Matrix Computation (Ed. A. George, J. R. Gilbert, and J. W. H. Liu). New York: Springer-Verlag
الجزء والصفحة:
...
27-2-2022
2950
A chordal graph is a simple graph in which every graph cycle of length four and greater has a cycle chord. In other words, a chordal graph is a graph possessing no chordless cycles of length four or greater (cf. West 2000, p. 225; Gross and Yellen 2006, p. 437).
The numbers of simple chordal graphs on , 2, ... nodes are 1, 2, 4, 10, 27, 94, 393, ... (OEIS A048193). The first few are illustrated above, though many are trivially chordal since they possess no cycles of length
.
The corresponding numbers of simple connected chordal graphs are 1, 1, 2, 5, 15, 58, 272, ... (OEIS A048192). The first few are illustrated above, though many are again chordal only trivially.
A split graph is a chordal graph whose graph complement is also chordal (Royle 2000).
Every chordal graph is perfect.
It is possible to recognize chordal graphs in linear time. Furthermore, a maximum clique of a chordal graph can be found in polynomial time although the problem is NP-complete for general graphs.
A chordal graph (which possesses no chordless cycles) is not the same as (or converse of) a chordless graph (which possesses no chords). For example, the square graph is chordless but not chordal, the diamond graph and tetrahedral graph
are chordal but not chordless, and empty graphs
, path graphs
, and the triangle graph
are both chordal and chordless.
Blair, J. R. S. and Peyton, B. W. "An Introduction to Chordal Graphs and Clique Trees." In Graph Theory and Sparse Matrix Computation (Ed. A. George, J. R. Gilbert, and J. W. H. Liu). New York: Springer-Verlag, pp.1-29, 1993.
Brandstadt, A.; Le, V. B.; and Spinrad, J. P. Graph Classes: A Survey. Philadelphia, PA: SIAM, 1999.
Bulatov, Y. "Mathematica Bits: Chordal Graph Package Update." http://mathematica-bits.blogspot.com/2011/02/chordal-graph-usage.html.Gross, J. T. and Yellen, J. Graph Theory and Its Applications, 2nd ed. Boca Raton, FL: CRC Press, 2006.Habib, M.; McConnell, R.; Paul, C.; and Viennot, L. "Lex-BFS and Partition Refinement, with Applications to Transitive Orientation, Interval Graph Recognition, and Consecutive Ones Testing." Theoret. Comput. Sci. 234, 59-84, 2000.
Rose, D.; Lueker, G.; and Tarjan, R. E. "Algorithmic Aspects of Vertex Elimination on Graphs." SIAM J. Comput. 5, 266-283, 1976.
Royle, G. F. "Counting Set Covers and Split Graphs." J. Integer Seq. 3, Article 00.2.6, 2000.
https://cs.uwaterloo.ca/journals/JIS/VOL3/ROYLE/royle.html.Sloane, N. J. A. Sequences A048192 and A048193 in "The On-Line Encyclopedia of Integer Sequences."West, D. B. "Chordal Graphs" and "Chordal Graphs Revisited." Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 224-226 and 323-328, 2000.