تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Sierpiński Curve
المؤلف:
Cundy, H. and Rollett, A.
المصدر:
Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., 1989.
الجزء والصفحة:
...
26-9-2021
1339
Sierpiński Curve
There are several fractal curves associated with Sierpiński.
The area for the first Sierpiński curve illustrated above (Sierpiński curve 1912) is
![]() |
The curve is called the Sierpiński curve by Cundy and Rollett (1989, pp. 67-68), the Sierpiński's square snowflake by Wells (1991, p. 229), and is pictured but not named by Steinhaus (1999, pp. 102-103). The th iteration of the first Sierpiński curve is implemented in the Wolfram Language as SierpinskiCurve[n].
The limit of the second Sierpiński's curve illustrated above has area
![]() |
The Sierpiński arrowhead curve is another Sierpiński curve.
REFERENCES:
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., 1989.
Dickau, R. M. "Two-Dimensional L-Systems." http://mathforum.org/advanced/robertd/lsys2d.html.
Gardner, M. Penrose Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed. New York: W. H. Freeman, p. 34, 1989.
Sierpiński, W. "Sur une nouvelle courbe continue qui remplit toute une aire plane." Bull. l'Acad. des Sciences Cracovie A, 462-478, 1912.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.
Wagon, S. Mathematica in Action. New York: W. H. Freeman, p. 207, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 229, 1991.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
