

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Hénon-Heiles Equation
المؤلف:
Gleick, J
المصدر:
Chaos: Making a New Science. New York: Penguin Books
الجزء والصفحة:
...
31-8-2021
4254
Hénon-Heiles Equation
The Hénon-Heiles equation is a nonlinear nonintegrable Hamiltonian system with
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where the potential energy function is defined by the polar equation
![]() |
(3) |
giving Cartesian potential
![]() |
(4) |
The total energy of the system is then given by
![]() |
(5) |
which is conserved during motion.

Integrating the above coupled ordinary differential equations from an arbitrary starting point with
and
gives the motion illustrated above.

Surfaces of section are illustrated above for various initial energies
,
is plotted vs.
at values where
.
The Hamiltonian for a generalized Hénon-Heiles potential is
![]() |
(6) |
The equations of motion are integrable only for
1.
,
2.
,
3.
, and
4.
.

The plots above show a number of eigenfunctions of the Schrödinger equation with a generalized Hénon-Heiles potential
![]() |
(7) |
for certain specific values of
(M. Trott, pers. comm., Jan. 6, 2004).
REFERENCES:
Gleick, J. Chaos: Making a New Science. New York: Penguin Books, pp. 144-153, 1988.
Hénon, M. and Heiles, C. "The Applicability of the Third Integral of Motion: Some Numerical Experiments." Astron. J. 69, 73-79, 1964.
Rasband, S. N. Chaotic Dynamics of Nonlinear Systems. New York: Wiley, pp. 171-172, 1990.
Tabor, M. "The Hénon-Heiles Hamiltonian." §4.1.b in Chaos and Integrability in Nonlinear Dynamics: An Introduction. New York: Wiley, pp. 121-122, 1989.
Trott, M. "The Mathematica Guidebooks Additional Material: Hénon-Heiles Eigenfunctions." http://www.mathematicaguidebooks.org/additions.shtml#S_2_01.
الاكثر قراءة في الرياضيات التطبيقية
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية












قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)