Sobolev Space
المؤلف:
Mazja, V.
المصدر:
Sobolev Spaces. New York: Springer-Verlag, 1985.
الجزء والصفحة:
...
4-8-2021
2133
Sobolev Space
For
,
an open subset of
,
and
, the Sobolev space
is defined by
{f in L^p(Omega): forall |alpha|<=s,partial_x^alphaf in L^p(Omega)}, " src="https://mathworld.wolfram.com/images/equations/SobolevSpace/NumberedEquation1.gif" style="height:17px; width:277px" /> |
(1)
|
where
,
, and the derivatives
are taken in a weak sense.
When endowed with the norm
 |
(2)
|
is a Banach space.
In the special case
,
is denoted by
. This space is a Hilbert space for the inner product
 |
(3)
|
Sobolev spaces play an important role in the theory of partial differential equations.
REFERENCES:
Mazja, V. Sobolev Spaces. New York: Springer-Verlag, 1985.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة