المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
المؤلفات العربية والمترجمة المتخصصة في مجالات النيماتودا
2025-04-09
Motivation
2025-04-09
درجات الحرارة والمرتفعات الجوية
2025-04-09
Teaching strategies
2025-04-09
تصنيف الكروموسومات
2025-04-09
What next educators?
2025-04-09

Words from the first language
2024-01-12
ما مدى مساهمة السياحة علمياً وعربياً
2025-02-05
دليل العقل التفكر
2024-11-11
الشعير (Hordeum vulgare)
2024-07-24
معنى كلمة حزب
27-2-2021
العامل المعنوي وتأثيراته الحياتية
1-11-2017

Moser Spindle  
  
1818   05:22 مساءً   date: 30-3-2022
Author : Bondy, A. and Murty, U. S. R
Book or Source : Graph Theory. Berlin: Springer-Verlag, 2008.
Page and Part : ...


Read More
Date: 20-3-2022 1911
Date: 27-4-2022 1893
Date: 18-5-2022 1249

Moser Spindle

MoserSpindle

The Moser spindle is the 7-node unit-distance graph illustrated above (Read and Wilson 1998, p. 187). It is sometimes called the Hajós graph (e.g., Bondy and Murty 2008. p. 358), though this term is perhaps more commonly applied to the Sierpiński sieve graph S_2.

It is implemented in the Wolfram Language as GraphData["MoserSpindle"].

MoserSpindleEmbeddings

A few other (non-unit) embeddings of the Moser spindle are illustrated above.

The Moser spindle has chromatic number 4 (as does the Golomb graph), meaning the chromatic number of the plane must be at least four, thus establishing a lower bound on the Hadwiger-Nelson problem. After a more than 50-year gap, the first unit-distance graph raising this bound (the de Grey graph with chromatic number 5) was constructed by de Grey (2018).


REFERENCES

Bondy, A. and Murty, U. S. R. Graph Theory. Berlin: Springer-Verlag, 2008.

de Grey, A. D. N. J. "The Chromatic Number of the Plane Is at Least 5." Geombinatorics 28, No. 1, 18-31, 2018.

Moser, L. and Moser, W. "Problem 10." Canad. Math. Bull. 4, 187-189, 1961.

Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, 1998.

Soifer, A. "The Hadwiger-Nelson Problem." In Open Problems in Mathematics (Ed. J. F. Nash, Jr. and M. Th. Rassias). Switzerland: Springer, p. 442, 2016.

Soifer, A. The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators. New York: Springer, 2008.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.