المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Fallacy  
  
1391   06:31 مساءً   date: 15-2-2022
Author : Ball, W. W. R. and Coxeter, H. S. M
Book or Source : Mathematical Recreations and Essays, 13th ed. New York: Dover
Page and Part : ...


Read More
Date: 18-1-2022 849
Date: 8-2-2022 842
Date: 20-1-2022 978

Fallacy

A fallacy is an incorrect result arrived at by apparently correct, though actually specious reasoning. The great Greek geometer Euclid wrote an entire book on geometric fallacies which, unfortunately, has not survived (Gardner 1984, p. ix).

The most common example of a mathematical fallacy is the "proof" that 1=2 as follows. Let a=b, then

ab=a^2

(1)

ab-b^2=a^2-b^2

(2)

b(a-b)=(a+b)(a-b)

(3)

b=a+b

(4)

b=2b

(5)

1=2.

(6)

The incorrect step is (4), in which division by zero (a-b=0) is performed, which is not an allowed algebraic operation. Similarly flawed reasoning can be used to show that 0=1, or any number equals any other number.

Ball and Coxeter (1987) give other such examples in the areas of both arithmetic and geometry.


REFERENCES

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 41-45 and 76-84, 1987.

Barbeau, E. J. Mathematical Fallacies, Flaws, and Flimflam. Washington, DC: Math. Assoc. Amer., 1999.

Bogomolny, A. "Fallacies." http://www.cut-the-knot.org/Curriculum/index.shtml#Fallacies.Gardner, M. "Fallacies." Ch. 14 in The Scientific American Book of Mathematical Puzzles and Diversions. New York: Simon and Schuster, pp. 141-150, 1959.

Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, 1984.

Pappas, T. "Geometric Fallacy & the Fibonacci Sequence." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 191, 1989.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.