Read More
Date: 17-1-2022
![]()
Date: 27-12-2021
![]()
Date: 16-1-2022
![]() |
Let and
be any ordinal numbers, then ordinal exponentiation is defined so that if
then
. If
is not a limit ordinal, then choose
such that
,
![]() |
If is a limit ordinal, then if
,
. If
then,
is the least ordinal greater than any ordinal in the set
(Rubin 1967, p. 204; Suppes 1972, p. 215).
Note that this definition is not analogous to the definition for cardinals, since may not equal
, even though
and
. Note also that
.
A familiar example of ordinal exponentiation is the definition of Cantor's first epsilon number. is the least ordinal such that
. It can be shown that it is the least ordinal greater than any ordinal in
.
REFERENCES:
Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.
Suppes, P. Axiomatic Set Theory. New York: Dover, 1972.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
مؤسسة السجناء السياسيين: سجلنا 120 ألفًا من ضحايا السجون والاعتقالات في عهد النظام السابق
|
|
|