Read More
Date: 13-4-2021
![]()
Date: 8-2-2021
![]()
Date: 20-2-2021
![]() |
A multidimensional point process is a measurable function from a probability space into
where
is the set of all finite or countable subsets of
not containing an accumulation point and where
is the sigma-algebra generated over
by the sets
![]() |
for all bounded Borel subsets . Here,
denotes the cardinality or order of the set
.
A multidimensional point process is sometimes abbreviated MPP, though care should be exhibited not to confuse the notion with that of a marked point process.
Despite a number of apparent differences, one can show that multidimensional point processes are a special case of a random closed set on (Baudin 1984).
REFERENCES:
Baudin, M. "Multidimensional Point Processes and Random Closed Sets." J. Appl. Prob. 21, 173-178, 1984.
Matheron, G. Random Sets and Integral Geometry. New York: Wiley, 1975.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|