Read More
Date: 12-1-2020
![]()
Date: 27-1-2020
![]()
Date: 13-12-2020
![]() |
Quinn et al. (2007) investigated a class of coupled oscillators whose bifurcation phase offset had a conjectured asymptotic behavior of
, with an experimental estimate for the constant
as
(OEIS A131329). Rather amazingly, Bailey et al. (2007) were able to find a closed form for
as the unique root of
in the interval
, where
is a Hurwitz zeta function.
A related constant conjectured by Quinn et al. (2007) to exist was defined in terms of
![]() |
(1) |
and given by
![]() |
(2) |
(OEIS A131330). Even more amazingly, the exact value of this constant was also found by Bailey et al. (2007) without full proof, but with enough to indicate that such a proof could in principle be constructed, to have the exact value
![]() |
(3) |
REFERENCES:
Bailey, D. H.; Borwein, J. M.; and Crandall, R. E. "Resolution of the Quinn-Rand-Strogatz Constant of Nonlinear Physics." Preprint. June 4, 2007. https://users.cs.dal.ca/~jborwein/QRS.pdf.
Quinn, D. ; Rand, R.; and Strogatz, S. "Singular Unlocking Transition in the Winfree Model of Coupled Oscillators." Phys. Rev. E 75, 036218-1-10, 2007.
Sloane, N. J. A. Sequences A131329 and A131330 in "The On-Line Encyclopedia of Integer Sequences."
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|