Read More
Date: 30-11-2020
![]()
Date: 28-7-2020
![]()
Date: 23-1-2021
![]() |
A family of operators mapping each space of modular forms onto itself. For a fixed integer
and any positive integer
, the Hecke operator
is defined on the set
of entire modular forms of weight
by
![]() |
(1) |
For a prime
, the operator collapses to
![]() |
(2) |
If has the Fourier series
![]() |
(3) |
then has Fourier series
![]() |
(4) |
where
![]() |
(5) |
(Apostol 1997, p. 121).
If , the Hecke operators obey the composition property
![]() |
(6) |
Any two Hecke operators and
on
commute with each other, and moreover
![]() |
(7) |
(Apostol 1997, pp. 126-127).
Each Hecke operator has eigenforms when the dimension of
is 1, so for
, 6, 8, 10, and 14, the eigenforms are the Eisenstein series
,
,
,
, and
, respectively. Similarly, each
has eigenforms when the dimension of the set of cusp forms
is 1, so for
, 16, 18, 20, 22, and 26, the eigenforms are
,
,
,
,
, and
, respectively, where
is the modular discriminant of the Weierstrass elliptic function (Apostol 1997, p. 130).
REFERENCES:
Apostol, T. M. "The Hecke Operators." §6.7 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 120-122, 1997.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|