Read More
Date: 23-10-2019
![]()
Date: 4-3-2020
![]()
Date: 31-10-2019
![]() |
Let be a number field and let
be an order in
. Then the set of equivalence classes of invertible fractional ideals of
forms a multiplicative Abelian group called the Picard group of
.
If is a maximal order, i.e., the ring of integers of
, then every fractional ideal of
is invertible and the Picard group of
is the class group of
. The order of the Picard group of
is sometimes called the class number of
. If
is maximal, then the order of the Picard group is equal to the class number of
.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|