Read More
Date: 25-8-2018
![]()
Date: 3-8-2019
![]()
Date: 22-4-2019
![]() |
Let ,
, and
be the lengths of the legs of a triangle opposite angles
,
, and
. Then the law of cosines states
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Solving for the cosines yields the equivalent formulas
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
This law can be derived in a number of ways. The definition of the dot product incorporates the law of cosines, so that the length of the vector from to
is given by
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
where is the angle between
and
.
The formula can also be derived using a little geometry and simple algebra. From the above diagram,
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
The law of cosines for the sides of a spherical triangle states that
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
(Beyer 1987). The law of cosines for the angles of a spherical triangle states that
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
(Beyer 1987).
For similar triangles, a generalized law of cosines is given by
![]() |
(19) |
(Lee 1997). Furthermore, consider an arbitrary tetrahedron with triangles
,
,
, and
. Let the areas of these triangles be
,
,
, and
, respectively, and denote the dihedral angle with respect to
and
for
by
. Then
![]() |
(20) |
which gives the law of cosines in a tetrahedron,
![]() |
(21) |
(Lee 1997). A corollary gives the nice identity
![]() |
(22) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 79, 1972.
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 148-149, 1987.
Lee, J. R. "The Law of Cosines in a Tetrahedron." J. Korea Soc. Math. Ed. Ser. B: Pure Appl. Math. 4, 1-6, 1997.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تقدم دعوة لجامعة الحلة للمشاركة في الحفل المركزي لتخرج طلبة الجامعات
|
|
|