Read More
Date: 23-8-2019
![]()
Date: 31-7-2019
![]()
Date: 28-4-2019
![]() |
The Poisson-Charlier polynomials form a Sheffer sequence with
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
giving the generating function
![]() |
(3) |
The Sheffer identity is
![]() |
(4) |
where is a falling factorial (Roman 1984, p. 121). The polynomials satisfy the recurrence relation
![]() |
(5) |
These polynomials belong to the distribution where
is a step function with jump
![]() |
(6) |
at , 1, ... for
. They are given by the formulas
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
where is a binomial coefficient,
is a falling factorial,
is an associated Laguerre polynomial,
is a Stirling number of the first kind, and
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
They are normalized so that
![]() |
(14) |
where is the delta function.
The first few polynomials are
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
REFERENCES:
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 2. New York: Krieger, p. 226, 1981.
Jordan, C. Calculus of Finite Differences, 3rd ed. New York: Chelsea, p. 473, 1965.
Roman, S. "The Poisson-Charlier Polynomials." §4.3.3 in The Umbral Calculus. New York: Academic Press, pp. 119-122, 1984.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 34-35, 1975.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|