Read More
Date: 8-8-2019
![]()
Date: 3-6-2019
![]()
Date: 16-5-2018
![]() |
A q-analog of Gauss's theorem due to Jacobi and Heine,
![]() |
(1) |
for (Gordon and McIntosh 1997; Koepf 1998, p. 40), where
is a q-hypergeometric function. A special case for
is given by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
where is a q-binomial coefficient (Koepf 1998, p. 43).
REFERENCES:
Bhatnagar, G. Inverse Relations, Generalized Bibasic Series, and their U(n) Extensions. Ph.D. thesis. Ohio State University, p. 31, 1995.
Gasper, G. and Rahman, M. Basic Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 10 and 236, 1990.
Gordon, B. and McIntosh, R. J. "Algebraic Dilogarithm Identities." Ramanujan J. 1, 431-448, 1997.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|