المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
الصورة الشعرية
2025-04-08
اسم المفعول
2025-04-08
تفريعات / القسم السادس عشر
2025-04-08
تفريعات / القسم الخامس عشر
2025-04-08
تفريعات / القسم الرابع عشر
2025-04-08
معنى قوله تعالى : هُوَ الَّذِي جَعَلَ الشَّمْسَ ضِيَاءً وَالْقَمَرَ نُورًا
2025-04-08

Modified Bases Affect Anticodon–Codon Pairing
31-5-2021
Matter is made of atoms
2024-01-22
سبب نزول قوله تعالى : {قُلْ رَبِّ إِمَّا تُرِيَنِّي مَا يُوعَدُونَ } [المؤمنون: 93]
6-2-2022
معنى كلمة حيق‌
10-12-2015
توجهات ابنائك مهمة قدر اهمية انجازاتهم
24-4-2017
The short vowels BATH, PALM, START
2024-04-19

Lemniscate Case  
  
1720   01:54 صباحاً   date: 23-4-2019
Author : Sloane, N. J. A
Book or Source : Sequence A093341 in "The On-Line Encyclopedia of Integer Sequences."
Page and Part : ...


Read More
Date: 19-9-2018 2004
Date: 4-8-2019 2046
Date: 23-8-2018 2801

Lemniscate Case

 

The case of the Weierstrass elliptic function with invariants g_2=1 and g_3=0. In this case, the half-periods are given by (omega_1,omega_2)=(omega,iomega), where omega is 1/(2sqrt(2)) times the lemniscate constant,

omega = L/(2sqrt(2))

(1)

= ([Gamma(1/4)]^2)/(4sqrt(pi))

(2)

= 1.8540746...

(3)

(OEIS A093341; Abramowitz and Stegun 1972, p. 658).


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Lemniscate Case (g_2=1g_3=0)." §18.14 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 658-662, 1972.

Sloane, N. J. A. Sequence A093341 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.