Read More
Date: 19-1-2019
![]()
Date: 9-3-2017
![]()
Date: 19-1-2019
![]() |
The Landau-Mignotte bound, also known as the Mignotte bound, is used in univariate polynomial factorization to determine the number of Hensel lifting steps needed. It gives an upper bound for the absolute value of coefficients of any nontrivial factor of a polynomial in
.
The bound is given by
![]() |
where is the 2-norm and
![]() |
Factorization over the integers is done by factoring the polynomial modulo a "good" prime using the Berlekamp-Zassenhaus algorithm, and the irreducible factors are then lifted to ones modulo
. There are guidelines for choosing
. For example,
should not evenly divide the leading coefficient of the polynomial, and
should be squarefree.
REFERENCES:
van Hoeij, M. "Factoring Polynomials and the Knapsack Problem." J. Number Th. 95, 167-189, 2002.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|