تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Compound Interest
المؤلف:
W.D. Wallis
المصدر:
Mathematics in the Real World
الجزء والصفحة:
208-209
15-2-2016
1485
When dealing with compound interest, students will find it very useful if their calculator enables them to calculate powers of numbers: for example, if it has a key (possibly one marked xy) that enables the user to input two numbers and automatically calculate the result of raising the first number to the power of the second number. (Only positive whole number powers will occur).
Say you have $100 and every year you double your money.
One year from now you have $200.
2 years from now you have $400.
3 years from now you have $800.
So in 1 year you gain 100%; in 3 years you gain 700%—much more than
3×100%. This process is called compounding. It also happens for interest less than 100%.
Sample Problem 1.1 Suppose you put $1,000 in the bank for 5 years at 10% interest paid annually. If you take your interest out of the bank at the end of each year, how much do you have at the end of 5 years? If you allow it to compound, how much do you have at the end of 5 years?
Solution. If you take your interest out of the bank at the end of each year, you get $100 each year. After 5 years you have a total of $1500, a profit of $500.
If you put your interest back in the bank at 10%:
• After year 1 you get $100, so you have a total of $1100 in the bank.
• After year 2 you get $110 (10% of $1100), so you have a total of $1210 in the bank.
• After year 3 you get $121, for a total of $1331.
• After year 4 get $133.10, for a total of $1464.10.
• After year 5 get $146.41, for a total of $1610.51.
So after 5 years you have $1610.51, a profit of $610.
Let’s look at this in general. Say you put $P in the bank at R% for N years, and reinvest all the interest. You end up with
This process is called geometric growth.
On the other hand, simple interest is the same as “we’ll take the interest out each year.” After N years at R% you would finish with
This is called arithmetic growth.
Sample Problem 1.2 Suppose you invest $1,200 at 10% interest for 3 years with interest paid each year. How much interest is earned in total, if you take the interest out each year? How much if you reinvest the interest each year?
Solution. We use the two formulas. For arithmetic growth, you end with
and the interest is $(1,560 − 1,200) = $360. Under geometric growth, the amount received after 3 years is
and the interest is $397.20.