Azeotropes
المؤلف:
Peter Atkins، Julio de Paula
المصدر:
ATKINS PHYSICAL CHEMISTRY
الجزء والصفحة:
ص183-184
2025-11-16
28
Azeotropes
Although many liquids have temperature–composition phase diagrams resembling the ideal version in Fig. 6.14, in a number of important cases there are marked deviations. A maximum in the phase diagram (Fig. 6.16) may occur when the favourable interactions between A and B molecules reduce the vapour pressure of the mixture below the ideal value: in effect, the A–B interactions stabilize the liquid. In such cases the excess Gibbs energy, GE (Section 5.4), is negative (more favourable to mixing than ideal). Examples of this behaviour include trichloromethane/propanone and nitric acid/water mixtures. Phase diagrams showing a minimum (Fig. 6.17) indicate that the mixture is destabilized relative to the ideal solution, the A–B interactions then being unfavourable. For such mixtures GE is positive (less favourable to mixing than ideal), and there may be contributions from both enthalpy and entropy effects. Examples include dioxane/water and ethanol/water mixtures.

Fig. 6.16 A high-boiling azeotrope. When the liquid of composition a is distilled, the composition of the remaining liquid changes towards b but no further.

Fig. 6.17 A low-boiling azeotrope. When the mixture at a is fractionally distilled, the vapour in equilibrium in the fractionating column moves towards b and then remains unchanged.
Deviations from ideality are not always so strong as to lead to a maximum or minimum in the phase diagram, but when they do there are important consequences for distillation. Consider a liquid of composition a on the right of the maximum in Fig. 6.16. The vapour (at a2 ′) of the boiling mixture (at a2) is richer in A. If that vapour is removed (and condensed elsewhere), then the remaining liquid will move to a composition that is richer in B, such as that represented by a3, and the vapour in equilibrium with this mixture will have composition a3 ′. As that vapour is removed, the composition of the boiling liquid shifts to a point such as a4, and the composition of the vapour shifts to a4 ′. Hence, as evaporation proceeds, the composition of the remaining liquid shifts towards B as A is drawn off. The boiling point of the liquid rises, and the vapour becomes richer in B. When so much A has been evaporated that the liquid has reached the composition b, the vapour has the same composition as the liquid. Evaporation then occurs without change of composition. The mixture is said to form an azeotrope.2 When the azeotropic composition has been reached, distillation cannot separate the two liquids because the condensate has the same composition as the azeotropic liquid. One example of azeotrope formation is hydro chloric acid/water, which is azeotropic at 80 per cent by mass of water and boils unchanged at 108.6°C. The system shown in Fig. 6.17 is also azeotropic, but shows its azeotropy in a different way. Suppose we start with a mixture of composition a1, and follow the changes in the composition of the vapour that rises through a fractionating column (essentially a vertical glass tube packed with glass rings to give a large surface area). The mixture boils at a2 to give a vapour of composition a2 ′. This vapour condenses in the column to a liquid of the same composition (now marked a3). That liquid reaches equilibrium with its vapour at a3 ′, which condenses higher up the tube to give a liquid of the same composition, which we now call a4. The fractionation therefore shifts the vapour towards the azeotropic composition at b, but not beyond, and the azeotropic vapour emerges from the top of the column. An example is ethanol/water, which boils unchanged when the water content is 4 per cent by mass and the temperature is 78°C.
الاكثر قراءة في مواضيع عامة في الكيمياء الفيزيائية
اخر الاخبار
اخبار العتبة العباسية المقدسة