تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Bhaskara I
المؤلف:
K Shankar Shukla
المصدر:
Bhaskara I, Bhaskara I and his works II. Maha-Bhaskariya
الجزء والصفحة:
...
21-10-2015
1726
Born: about 600 in (possibly) Saurastra (modern Gujarat state), India
Died: about 680 in (possibly) Asmaka, India
We have very little information about Bhaskara I's life except what can be deduced from his writings. Shukla deduces from the fact that Bhaskara I often refers to the Asmakatantra instead of the Aryabhatiya that he must have been working in a school of mathematicians in Asmaka which was probably in the Nizamabad District of Andhra Pradesh. If this is correct, and it does seem quite likely, then the school in Asmaka would have been a collection of scholars who were followers of Aryabhata I and of course this fits in well with the fact that Bhaskara I himself was certainly a follower of Aryabhata I.
There are other references to places in India in Bhaskara's writings. For example he mentions Valabhi (today Vala), the capital of the Maitraka dynasty in the 7th century, and Sivarajapura, which were both in Saurastra which today is the Gujarat state of India on the west coast of the continent. Also mentioned are Bharuch (or Broach) in southern Gujarat and Thanesar in the eastern Punjab which was ruled by Harsa for 41 years from 606. Harsa was the preeminent ruler in north India through the first half of Bhaskara I's life. A reasonable guess would be that Bhaskara was born in Saurastra and later moved to Asmaka.
Bhaskara I was an author of two treatises and commentaries to the work of Aryabhata I. His works are the Mahabhaskariya, the Laghubhaskariya and the Aryabhatiyabhasya. The Mahabhaskariya is an eight chapter work on Indian mathematical astronomy and includes topics which were fairly standard for such works at this time. It discusses topics such as: the longitudes of the planets; conjunctions of the planets with each other and with bright stars; eclipses of the sun and the moon; risings and settings; and the lunar crescent.
Bhaskara I included in his treatise the Mahabhaskariya three verses which give an approximation to the trigonometric sine function by means of a rational fraction. These occur in Chapter 7 of the work. The formula which Bhaskara gives is amazingly accurate and use of the formula leads to a maximum error of less than one percent. The formula is
sin x = 16x (π - x)/[5π2 - 4x (π - x)]
and Bhaskara attributes the work as that of Aryabhata I. We have computed the values given by the formula and compared it with the correct value for sin x for x from 0 to π/2 in steps of π/20.
x = 0 |
formula = 0.00000 |
sin x = 0.00000 |
error = 0.00000 |
x = π/20 |
formula = 0.15800 |
sin x = 0.15643 |
error = 0.00157 |
x = π/10 |
formula = 0.31034 |
sin x = 0.30903 |
error = 0.00131 |
x = 3π/20 |
formula = 0.45434 |
sin x = 0.45399 |
error = 0.00035 |
x = π/5 |
formula = 0.58716 |
sin x = 0.58778 |
error = -0.00062 |
x = π/4 |
formula = 0.70588 |
sin x = 0.70710 |
error = -0.00122 |
x = π/10 |
formula = 0.80769 |
sin x = 0.80903 |
error = -0.00134 |
x = 7π/20 |
formula = 0.88998 |
sin x = 0.89103 |
error = -0.00105 |
x = 2π/5 |
formula = 0.95050 |
sin x = 0.95105 |
error = -0.00055 |
x = 9π/20 |
formula = 0.98753 |
sin x = 0.98769 |
error = -0.00016 |
x = π/2 |
formula = 1.00000 |
sin x = 1.00000 |
error = 0.00000 |
In 629 Bhaskara I wrote a commentary, the Aryabhatiyabhasya, on the Aryabhatiya by Aryabhata I. The Aryabhatiya contains 33 verses dealing with mathematics, the remainder of the work being concerned with mathematical astronomy. The commentary by Bhaskara I is only on the 33 verses of mathematics. He considers problems of indeterminate equations of the first degree and trigonometric formulae. In the course of discussions of the Aryabhatiya, Bhaskara I expressed his idea on how one particular rectangle can be treated as a cyclic quadrilateral. He was the first to open discussion on quadrilaterals with all the four sides unequal and none of the opposite sides parallel.
One of the approximations used for π for many centuries was √10. Bhaskara I criticised this approximation. He regretted that an exact measure of the circumference of a circle in terms of diameter was not available and he clearly believed that π was not rational.
In [11], [12], [13] and [14] Shukla discusses some features of Bhaskara's mathematics such as: numbers and symbolism, the classification of mathematics, the names and solution methods of equations of the first degree, quadratic equations, cubic equations and equations with more than one unknown, symbolic algebra, unusual and special terms in Bhaskara's work, weights and measures, the Euclidean algorithm method of solving linear indeterminate equations, examples given by Bhaskara I illustrating Aryabhata I's rules, certain tables for solving an equation occurring in astronomy, and reference made by Bhaskara I to the works of earlier Indian mathematicians.
Books:
Articles: