تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Aryabhata II
المؤلف:
D Pingree
المصدر:
Biography in Dictionary of Scientific Biography
الجزء والصفحة:
...
21-10-2015
1445
Born: about 920 in India
Died: about 1000 in India
Essentially nothing is known of the life of Aryabhata II. Historians have argued about his date and have come up with many different theories. In [1] Pingree gives the date for his main publications as being between 950 and 1100. This is deduced from the usual arguments such as which authors Aryabhata II refers to and which refer to him. G R Kaye argued in 1910 that Aryabhata II lived before al-Biruni but Datta [2] in 1926 showed that these dates were too early.
The article [3] argues for a date of about 950 for Aryabhata II's main work, the Mahasiddhanta, but R Billiard has proposed a date for Aryabhata II in the sixteenth century. Most modern historians, however, consider the most likely dates for his main work as around 950 and we have given very approximate dates for his birth and death based on this hypothesis. See [7] for a fairly recent discussion of this topic.
The most famous work by Aryabhata II is the Mahasiddhanta which consists of eighteen chapters. The treatise is written in Sanskrit verse and the first twelve chapters form a treatise on mathematical astronomy covering the usual topics that Indian mathematicians worked on during this period. The topics included in these twelve chapters are: the longitudes of the planets, eclipses of the sun and moon, the projection of eclipses, the lunar crescent, the rising and setting of the planets, conjunctions of the planets with each other and with the stars.
The remaining six chapters of the Mahasiddhanta form a separate part entitled On the sphere. It discusses topics such as geometry, geography and algebra with applications to the longitudes of the planets.
In Mahasiddhanta Aryabhata II gives in about twenty verses detailed rules to solve the indeterminate equation: by = ax + c. The rules apply in a number of different cases such as when c is positive, when c is negative, when the number of the quotients of the mutual divisions is even, when this number of quotients is odd, etc. Details of Aryabhata II's method are given in [6].
Aryabhata II also gave a method to calculate the cube root of a number, but his method was not new, being based on that given many years earlier by Aryabhata I, see for example [5].
Aryabhata II constructed a sine table correct up to five decimal places when measured in decimal parts of the radius, see [4]. Indian mathematicians were very interested in giving accurate sine tables since they were used to calculate the planetary positions as accurately as possible.
Articles: