

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Broom Space
المؤلف:
Joshi, K.
المصدر:
Introduction to General Topology. New Delhi, India: Wiley
الجزء والصفحة:
p. 157
1-8-2021
1879
Broom Space

The subset
of the Euclidean plane formed by the union of the interval
of the x-axis and all line segments of unit length passing through the origin which form an angle
(measured in radians) with it, for all positive integers
.
With respect to the relative topology,
is pathwise-connected. Therefore it is connected, but it is not locally pathwise-connected at any point of the open interval
. Each disk centered at one of these points intersects
in a union of disjoint segments, which form a disconnected set.

Let
be the broom space formed by segments of length
for all natural numbers
, and place
,
,
, ... one right after the other on the
-axis. This will cover the half-open interval
of the
-axis (above figure). The space obtained by adding the point (2,0) to this sequence of brooms is then connected im kleinen at point (2,0), since each open neighborhood of (2,0) contains a closed disk whose radius is exactly formed by the basis intervals of
for all sufficiently large
. Hence any two points contained in this disk are connected by a path composed of segments of these broom spaces. On the other hand, point (2, 0) has no connected open neighborhood since every open disk centered at (2,0) has no boundary and hence, unlike in the case of a closed disk, it cannot end right at the vertex of some broom space. Therefore, it must cut through some
, which will be intersected in an union of disjoint segments, and these form a disconnected set.
REFERENCES:
Joshi, K. D. Introduction to General Topology. New Delhi, India: Wiley, p. 157, 1983.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)