تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Squarefree
المؤلف:
Bellman, R. and Shapiro, H. N.
المصدر:
"The Distribution of Squarefree Integers in Small Intervals." Duke Math. J. 21
الجزء والصفحة:
...
28-12-2020
2680
Squarefree
A number is said to be squarefree (or sometimes quadratfrei; Shanks 1993) if its prime decomposition contains no repeated factors. All primes are therefore trivially squarefree. The number 1 is by convention taken to be squarefree. The squarefree numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, ... (OEIS A005117). The squareful numbers (i.e., those that contain at least one square) are 4, 8, 9, 12, 16, 18, 20, 24, 25, ... (OEIS A013929).
The Wolfram Language function SquareFreeQ[n] determines whether a number is squarefree. Note that for technical reasons, the Wolfram Language considers 1 to be squarefree, a convention that is consistent with defining a number to be squarefree when , where
is the Möbius function. The number 1 therefore has the somewhat curious distinction of being simultaneously a perfect square and squarefree.
Let where
is squarefree and
where
contains one or more squares, so that
. Then
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
for and
is the Riemann zeta function (Hardy and Wright 1979, p. 255).
The values of the first integers are plotted above on a
grid, with squarefree values shown in white. Clear patterns emerge where multiples of numbers each share one or more repeated factor.
There is no known polynomial time algorithm for recognizing squarefree integers or for computing the squarefree part of an integer. In fact, this problem may be no easier than the general problem of integer factorization (obviously, if an integer can be factored completely,
is squarefree iff it contains no duplicated factors). This problem is an important unsolved problem in number theory because computing the ring of integers of an algebraic number field is reducible to computing the squarefree part of an integer (Lenstra 1992, Pohst and Zassenhaus 1997).
All numbers less than in Sylvester's sequence are squarefree, and no squareful numbers in this sequence are known (Vardi 1991). Every Carmichael number is squarefree. The binomial coefficients
are squarefree only for
, 3, 4, 6, 9, 10, 12, 36, ..., with no others less than
. The central binomial coefficients are squarefree only for
, 2, 3, 4, 5, 7, 8, 11, 17, 19, 23, 71, ... (OEIS A046098), with no others less than 1500.
Let be the number of positive squarefree numbers
(Hardy and Wright 1979, p. 251). Then for
, 2, ..., the first few values are 0, 1, 2, 3, 3, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 11, ... (OEIS A013928). Sums for
include
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
where is the Möbius function.
The asymptotic number of squarefree numbers
is given by
![]() |
(8) |
(Landau 1974, pp. 604-609; Nagell 1951, p. 130; Hardy and Wright 1979, pp. 269-270; Hardy 1999, p. 65). The asymptotic density is therefore (OEIS A059956; Wells 1986, p. 28; Borwein and Bailey 2003, p. 139), where
is the Riemann zeta function. The values of
for
, 100, 1000, ... are 7, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, ... (OEIS A071172).
Similarly, the asymptotic density of squarefree Gaussian integers is given by (OEIS A088454), where
is Catalan's constant (Pegg; Collins and Johnson 1989; Finch 2003, p. 601).
The Möbius function is given by
(9) |
so indicates that
is squarefree. The asymptotic formula for
is equivalent to the formula
![]() |
(10) |
(Hardy and Wright 1979, p. 270)
Let be the number of consecutive numbers
with
such that
and
are both squarefree.
for
, 1, ... are given by 1, 5, 33, 323, 3230, 32269, 322619, 3226343, 32263377, 322634281, 3226340896, ... (OEIS A087618). Then
is given asymptotically by
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
(OEIS A065474; Carlitz 1932, Heath-Brown 1984), where is the
th prime and
is the Feller-Tornier constant.
REFERENCES:
Bellman, R. and Shapiro, H. N. "The Distribution of Squarefree Integers in Small Intervals." Duke Math. J. 21, 629-637, 1954.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.
Carlitz, L. "On a Problem in Additive Arithmetic. II." Quart. J. Math. 3, 273-290, 1932.
Collins, G. E. and Johnson, J. R. "The Probability of Relative Primality of Gaussian Integers." Proc. 1988 Internat. Sympos. Symbolic and Algebraic Computation (ISAAC), Rome (Ed. P. Gianni). New York: Springer-Verlag, pp. 252-258, 1989.
Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Hardy, G. H. and Wright, E. M. "The Number of Squarefree Numbers." §18.6 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 269-270, 1979.
Heath-Brown, D. R. "The Square Sieve and Consecutive Square-Free Numbers." Math. Ann. 266, 251-259, 1984.
Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed. New York: Chelsea, 1974.
Lenstra, H. W. Jr. "Algorithms in Algebraic Number Theory." Bull. Amer. Math. Soc. 26, 211-244, 1992.
Nagell, T. Introduction to Number Theory. New York: Wiley, p. 130, 1951.
Pegg, E. Jr. "The Neglected Gaussian Integers." https://www.mathpuzzle.com/Gaussians.html.
Pohst, M. and Zassenhaus, H. Algorithmic Algebraic Number Theory. Cambridge, England: Cambridge University Press, p. 429, 1997.
Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 114, 1993.
Sloane, N. J. A. Sequences A005117/M0617, A013928, A013929, A046098, A059956, A065474, A071172, A087618, and A088454 in "The On-Line Encyclopedia of Integer Sequences."
Vardi, I. "Are All Euclid Numbers Squarefree?" §5.1 in Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 7-8, 82-85, and 223-224, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
