تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Riemann Prime Counting Function
المؤلف:
Borwein, J. M.; Bradley, D. M.; and Crandall, R. E.
المصدر:
"Computational Strategies for the Riemann Zeta Function." J. Comput. Appl. Math. 121
الجزء والصفحة:
...
27-8-2020
2990
Riemann defined the function by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
(Hardy 1999, p. 30; Borwein et al. 2000; Havil 2003, pp. 189-191 and 196-197; Derbyshire 2004, p. 299), sometimes denoted ,
(Edwards 2001, pp. 22 and 33; Derbyshire 2004, p. 298), or
(Havil 2003, p. 189). Note that this is not an infinite series since the terms become zero starting at
, and where
is the floor function and
is the base-2 logarithm. For
, 2, ..., the first few values are 0, 1, 2, 5/2, 7/2, 7/2, 9/2, 29/6, 16/3, 16/3, ... (OEIS A096624 and A096625). As can be seen, when
is a prime,
jumps by 1; when it is the square of a prime, it jumps by 1/2; when it is a cube of a prime, it jumps by 1/3; and so on (Derbyshire 2004, pp. 300-301), as illustrated above.
Amazingly, the prime counting function is related to
by the Möbius transform
![]() |
(4) |
where is the Möbius function (Riesel 1994, p. 49; Havil 2003, p. 196; Derbyshire 2004, p. 302). More amazingly still,
is connected with the Riemann zeta function
by
![]() |
(5) |
(Riesel 1994, p. 47; Edwards 2001, p. 23; Derbyshire 2004, p. 309). is also given by
![]() |
(6) |
where is the Riemann zeta function, and (5) and (6) form a Mellin transform pair.
Riemann (1859) proposed that
![]() |
(7) |
where is the logarithmic integral and the sum is over all nontrivial zeros
of the Riemann zeta function
(Mathews 1961, Ch. 10; Landau 1974, Ch. 19; Ingham 1990, Ch. 4; Hardy 1999, p. 40; Borwein et al. 2000; Edwards 2001, pp. 33-34; Havil 2003, p. 196; Derbyshire 2004, p. 328). Actually, since the sum of roots is only conditionally convergent, it must be summed in order of increasing
even when pairing terms
with their "twins"
, so
![]() |
(8) |
(Edwards 2001, pp. 30 and 33).
This formula was subsequently proved by Mangoldt (1895; Riesel 1994, p. 47; Edwards 2001, pp. 48 and 62-65). The integral on the right-hand side converges only for , but since there are no primes less than 2, the only values of interest are for
. Since it is monotonic decreasing, the maximum therefore occurs at
, which has value
![]() |
(9) |
(OEIS A096623; Derbyshire 2004, p. 329).
Riemann also considered the function
![]() |
(10) |
sometimes also denoted (Borwein et al. 2000), obtained by replacing
in the Riemann function with the logarithmic integral
, where
is the Riemann zeta function and
is the Möbius function (Hardy 1999, pp. 16 and 23; Borwein et al. 2000; Havil 2003, p. 198).
is plotted above, including on a semilogarithmic scale (bottom two plots), which illustrate the fact that
has a series of zeros near the origin. These occur at
for
(OEIS A143530), 15300.7, 21381.5, 25461.7, 32711.9, 40219.6, 50689.8, 62979.8, 78890.2, 98357.8, ..., corresponding to
(OEIS A143531),
,
,
,
,
,
,
,
,
, ....
The quantity is plotted above.
This function is implemented in the Wolfram Language as RiemannR[x].
Ramanujan independently derived the formula for , but nonrigorously (Berndt 1994, p. 123; Hardy 1999, p. 23). The following table compares
and
for small
. Riemann conjectured that
(Knuth 1998, p. 382), but this was disproved by Littlewood in 1914 (Hardy and Littlewood 1918).
The Riemann prime counting function is identical to the Gram series
![]() |
(11) |
where is the Riemann zeta function (Hardy 1999, pp. 24-25), but the Gram series is much more tractable for numeric computations. For example, the plots above show the difference
where
is computed using the Wolfram Language's built-in NSum command (black) and approximated using the first
(blue),
(green),
(yellow),
(orange), and
(red) points.
In the table, denotes the nearest integer function. Note that the values given by Hardy (1999, p. 26) for
are incorrect.
![]() |
![]() |
![]() |
Sloane | A057793 | A057794 |
1 | 5 | 1 |
2 | 26 | 1 |
3 | 168 | 0 |
4 | 1227 | ![]() |
5 | 9587 | ![]() |
6 | 78527 | 29 |
7 | 664667 | 88 |
8 | 5761552 | 97 |
9 | 50847455 | ![]() |
10 | 455050683 | ![]() |
11 | 4118052495 | ![]() |
12 | 37607910542 | ![]() |
Riemann's function is related to the prime counting function by
![]() |
(12) |
where the sum is over all complex (nontrivial) zeros of
(Ribenboim 1996), i.e., those in the critical strip so
, interpreted to mean
![]() |
(13) |
However, no proof of the equality of (12) appears to exist in the literature (Borwein et al. 2000).
REFERENCES:
Borwein, J. M.; Bradley, D. M.; and Crandall, R. E. "Computational Strategies for the Riemann Zeta Function." J. Comput. Appl. Math. 121, 247-296, 2000.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Edwards, H. M. Riemann's Zeta Function. New York: Dover, 2001.
Hardy, G. H. and Littlewood, J. E. Acta Math. 41, 119-196, 1918.
Hardy, G. H. "The Series ." §2.3 in Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 42, 2003.
Ingham, A. E. The Distribution of Prime Numbers. London: Cambridge University Press, p. 83, 1990.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.
Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen, 3rd ed. New York: Chelsea, 1974.
Mangoldt, H. von. "Zu Riemann's Abhandlung 'Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.' " J. reine angew. Math. 114, 255-305, 1895.
Mathews, G. B. Ch. 10 in Theory of Numbers. New York: Chelsea, 1961.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 224-225, 1996.
Riemann, G. F. B. "Über die Anzahl der Primzahlen unter einer gegebenen Grösse." Monatsber. Königl. Preuss. Akad. Wiss. Berlin, 671-680, Nov. 1859. Reprinted in Das Kontinuum und Andere Monographen (Ed. H. Weyl). New York: Chelsea, 1972. Also reprinted in English translation in Edwards, H. M. Appendix. Riemann's Zeta Function. New York: Dover, pp. 299-305, 2001.
Riemann, B. "Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe." Reprinted in Gesammelte math. Abhandlungen. New York: Dover, pp. 227-264, 1957.
Riesel, H. and Göhl, G. "Some Calculations Related to Riemann's Prime Number Formula." Math. Comput. 24, 969-983, 1970.
Riesel, H. "The Riemann Prime Number Formula." Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 50-52, 1994.
Sloane, N. J. A. Sequences A057793, A057794, A096623, A096624, A096625, A143530, A143531 in "The On-Line Encyclopedia of Integer Sequences."
Wagon, S. Mathematica in Action. New York: W. H. Freeman, pp. 28-29 and 362-372, 1991.